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DYNAMIC ADI METHODS FOR ELLIPTICYEQUATIONS WITH
GRADIENT DEPENDENT COEFFICIENTS

Said Doss
Lawrence Berkeley Laboratory

University of California
Berkeley, California

ABSTRACT

In this paper the dynamic alternating direction implicit (DADI)
methods, introduced by S. Doss and K. Miller in a previous paper [1]
and applied there successfully to elliptic problems with linear and non-
linear coefficients (a(u)), are applied also to elliptic problems with
nonlinear gradient dependent coefficients (a(Vu)) such as: (i) the min-
imal surface equation, (ii) the capillary surface equation, and (iii)
the magnetostatic equation. We also develop certain improvements of
these methods and extend them to "3-directional" or "3-dimensional

situations.
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1.1
I. INTRODUCTION

In this paper the dynamic alternating direction implicit (DADI)
methods, introduced by Doss and Miller in [1] and applied there success-
fully to elliptic problems with linear and nonlinear coefficients (a(u)),
are applied also to elliptic problems with nonlinear gradient dependent
coefficients (a(Vu)) such as: (i) the minimal surface equation, (ii)
the capillary surface equation, and (iii) the magnetostatic equation.
We also develop certain improvements of these methods and extend them to
"3-directional" or "3-dimensional" situations.

In Section II we first give certain generalizations and revi-
sions of the "2-directional" dynamic ADI methods of [1]. These corre—
spond to solving a linear elliptic finite difference or finite element
equation of the decomposed form (A+B) u = f where A and B are easily
invertible and in some sense "negative definite". Our generalizations
and revisions lead to somewhat more efficient strategies for automatic
change of "stepsize" At; these seem to succeed in avoiding certain
types of convergence stagnation which had previously been observed in a
few extreme cases.

In Section III we are required to discuss several different op-
tions for possible approximate linearizations If =.A* + B* (approximations
to L', the Frechet derivative) of our nonlinear operator L in the case
of the nonlinear equations (3.2) through (3.5) with gradient dependent
coefficients. These decompositions should be such that A* and B* re-

main negative definite and easily invertible, conditions which are
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impossible for L' itself since it corresponds to a 9-point rather than
5-point pattern at each node.

In Section IV we generalize to '"three-directional" dynamic ADI
methods for the elliptic equation (A+B+C) u= f. Such three-directional
generalizations correspond to three-dimensional elliptic problems or to
two-dimensional elliptic problems with a triangulation of the region
corresponding to a hexagonal pattern.

In Section V we give some rather general remarks regarding our
numerical experimentations with dynamic ADI. We briefly mention some
of the other numerical methods that were used in the comparisons with

DADI.

The remaining sections of this paper are expositions of a large
portion of our actual numerical tests with dynamic ADI. We mention in
particular our tests with the capillary surface equation on an ellipti-
cal region with highly nonuniform mesh spacing and our tests with the
magnetosfatié equation with highly nonsmooth coefficients.

In all of these highly diverse numerical tests (and in those of
[1]), the DADI method worked, and worked beautifully, and never failed
to converge. Moreover, in competition with several other numerical
methods employed in our comparisons, DADI was always ahead in computa-

tional efficiency by a margin that in many cases was quite substantial.




2.1

IT. TWO DIRECTIONAL DADI METHODS FOR
ELLIPTIC EQUATIONS

2.1 Introduction

The basic ideas in this section as well as the numerical justi-
fications are presented in detail in a paper being published by Keith
Miller and the author [1]. Here a brief summary of these ideas will be
given. The emphasis will be on the rather general derivation of the
"convergence factor" and the "test parameter" of the DADI method.

This section is céncluded by devising a revised stepsize strategy
that seems to succeed in‘avoiding certain types of stagnation in the con-
vergence which had been observed in a few rare extreme cases. Such stag-
nation corresponded to acceptance of the present value of At, without
change over a long sequence of steps, even though the actual convergence

factor was extremely close to 1.

2.2 Basic Concepts

Consider the elliptic finite difference or finite element equa-~-

tion
ILuZ (A+B) u=f (2.1)

where f is given and A and B are linear operators, which are in some
loose sense negative definite and which are easily invertible. 1In the
nonlinear case, it is L', the Fréchet derivative of L, that should

possess the decomposition A + B.
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The ADI approach (Peacman and Rachford [4]) of solving (2.1) is

to first heuristically convert (2.1) into the parabolic problem

¢ A+B)v-£f,t>0,
(2.2)

some initial approximation uO at t = 0,

v

]

v

whose steady state ( t=) solution solves (2.1). One then proceeds to
discretize (2.2) in time with stepsize At, solving odd numbered steps

(n+1) implicitly in A and explicitly in B,

n+1

oo o™ = A @™+ Bl - gy, " (2.3)

then reversing the process on even numbered steps (nt+2), solving expli-

citly in A and implicitly in B,

N v A (2.4)

The combined operations (2.3) and (2.4), always performed with the same

At, constitute one double-sweep of the ADI iteration.

The true power of the ADI method on elliptic problems comes to
bear only when one uses variable At. One chooses a short sequence of
iteration parameters 0 < At1 < At2°'° < Atr, then scans through r double-
sweeps of the ADI process, first with At==Atl, then with At=At2,'°- Atr,

thus completing one full ADI iteration. 1In this way one is of course

not attempting to solve the parabolic equation (2.2) accurately for
finite times, but to reach the t = ® solution as quickly as possible;
one hopes to damp out the high order components of the error very

strongly with the small time steps, then to proceed to larger time steps
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to damp out the lower order components.

The innovation of DADI, as opposed to standard ADI, is to devise
a strategy for automatic change of the stepsize At by the compufer. In
this way DADI should be able to keep At within a region of fast conver-
gence, to recognize instabilities as they start to develop and head them
off by decreasing At, and finally to avoid the necessity of judicious a
priori choice of the iteration parameters of standard ADI.

By eliminating un+l in (2.3) and 2.4) one obtains

(1- AtA) (1~ AtB) (@™ 2-u™) = 2 At ( A+B)uP-£). (2.5)

*
One can also obtain (2.5) alternatively by eliminating u in the follow-

ing equations

w-d® = 2 At (A +u™)/2 + B ®)/2 - £) (2.3)"

I
(=1
]

20t (A +u™)/2 + B 2™y /2 - £). (2.4)"

This last scheme is due to Douglas and Gunn [3], and it generalizes to
multidimensions to give unconditionally stable schemes.

\ , n n
Next let us derive the error equation. Letting e = u - u , one

then has from (2.5)

(1- AtA) (1~ AtB) ™2™y = 2 At(a+B)e®,

which is the same as

™2 - ((1- Ata) (1- AtBY L ((1+ AtA) (1+AtB)) &P, (2.6)
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One should observe from the formulation (2.6), the significance
of the commutativity of the operators A and B. From such a condition,
together with the symmetry and negative definiteness of A and B (already
assumed), one can easily conclude that e" is decreasing in norm (the in-

ner product norm).

2.3 The test parameter and the convergence factor

Starting from step (n+2) and performing another double~-sweep

with stepsize m At, for example m=1 or 3, one then obtains un+4 where

nt+4  n+2 n+2
~-u ~-f

(1-m AtA) (1-m AtB) (u ) = 2m At ((A+B)u ). (2.7)

Because the true solution u of (2.1) is a steady state solution of (2.3)
and (2.4) (or of (2.3)'and (2.4)") (i.e., one can replace un, un+1,'~-,
by u in those equations and still have equality) it follows that the

error en+4 satisfies (2.7) with f =0, that is,

e™* o ((1-m AtA) (1-m AtBY) L ((L4m AtA) (14m AtB)) ™2, (2.8)

Let us write

R(A,B) = ((1-A) (1-B)) L ((1+4) (1+B)). (2.9)
n+4 n
From (2.6) and (2.8), the errors e and e are then related by
nt+4
e

The "convergence factor'" CF is defined by

cF = || ™| /|| el (2.11)

=®(m AtA,m AtB) R(AtA, AtB) e”. (2.10)
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Now to derive the "test parameter'" TP, we back up to the nth
step and (strictly for bookkeeping purposes) perform one double-sweep
with stepsize (m+l) At. We thus obtain the value En+4 and the "error"

—n+4 _ —nt+b
e = u - u, where

(1-sA) (1-sB) (u nJ"Z’-un) = 2s((A+B)u" - £), (2.12)

and where s= (m+l) At. Thus

e " _ R(sa,sB)el. (2.13)

The "test parameter" is then defined by

TP ” 'En+4 _un+4” / ”un+4__'un”

I

(2.14)

” gn+4 __en+4” / ”en+4_en”.

2.4 Analysis and the choice of stepsize strategy

For the sake of deriving a stepsize strategy, the operators A and
B are assumed to be: (1) negative definite, (2) symmetric, and (3) com-
muting. We also assume, (4) that the error e at each step n is concen-
trated mainly (i.e., for the analysis completely) in a single eigencompo-
nent. That is, e is assumed for the moment to be an eigenfunction for
both A and B with corresponding eigenvalues -a and -b. (Notice that (2)
and (3) imply that A and B have common eigenspaces.) \

Under these assumptions, the test parameter and the convergence

factor can easily be computed as functions of a At,b At and m.
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Thus
mp = ([R(ma At,mb At) R(a At,b At) -R(mtl)a At, (m+l)b At)
R(ma At,mb At) R(a At,b At) -1 ’
(2.15)
CF = 'R(ma At,mb At) R(a At,b At) s
where

R(a,b) = (1-a) (1-b)/ ((1+a) (1+b)) .

The hope is now that it will always be possible (even though a
and b are unknown and unknowabie) to make CF decently small merely by
choosing At in such a way that the test parameter falls in a certain
range. To search for such a possibility, we have decided to study graph-
ically the simultaneous behavior of TP and CF as functions of At, for
numerous values of a and b; by normalizing we may suppose that 1 = a >b.

In the computer generated graphs, Figures 2.1 through 2.12, we
then plot TP and CF]'/2 as functions of At. .We have chosen to display
the graphs for (a,b) equal to the values (1, 1), (1,.5), (1,.1) and
(1,.01). These were plotted for m = 1, 2, and 3.

Strikingly enough, in all these graphs, as well as in many other
graphs corresponding to diverse values of b that we have studied but have
not displayed here, one can see that whenever TP falls approximately in
the range (.1,.3) the corresponding values of CF are always decently
small. Based on this observation, and witﬁ constant checking against
the graphs plus experience with a small number of initial computational

runs, we have devised the following strategy for the change in At.
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First, one partitions the range of TP into the disjoint set of
intervals: (0,.05], (.05,.1], (.1,.31, (.3,.5], (.5,.66], (.66,.75],
and (.75,%). The corresponding changesvin At are then given by the
factors: 8; 4, 2, 1/5, 1/7, 1/11, and 1/17 respectively.’ Finally, the
step is accepted for all values of TP < .66, otherwise the step is re-
jected. This strategy will be referred to as the "strong strategy'.

Once the step is accepted, the changé in At is, of course, applied
to the next step. Here one "step" is equivalent to two ADI double-sweeps
with stepsizes At, m At, plus one bookkeeping double-sweep with stepsize

(m+1) At.

Notice that the strategy devised here is slightly different from
that strategy (let us call it strategy I) adopted in [1]. There the
partition of the range of TP was: (0,.05], (.05,.1], (.1,.3], (}3,.4],
(.4,.6], and (.6,~). The corresponding changes in At were given by the
factors: 4, 2, 1, 1/2, 1/4, and 1/16 respectively. The step is rejected
if TP is greater than .6, otherwise the step is accepted.

In the hopes of greater stability, and as in the design of strat-
egy I, this strong strategy is biased in favor of smaller At. We have
allowed a rather drastic reduction factor (1/17 or 1/11) when needed;
this is often followed in practice (and by design) by a more gradual
doubling or quadrupling or octupling of At in successive steps back up
towards its previous value (see attaéhed examples). Our aim is always
to well damp out the higher order eigencomponents of the error before in-

creasing At to damp out the lower eigencomponents.
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Remarks

1.

4.

Changing the previous strategy I by merely replacing the factor 1 by
the factor 2 turned out to be sufficient by itself in preventing the
occurrence of those types of stagnation that were referred to in the
introduction. We have not given this minimally modified strategy an

exhaustive testing, however.

Carrying out each DADT step with stepsizes At, 3Ag 4At, instead of
At, At, 2 At as in [1], seems to give slightly better results. In

fact with such a new time policy we probably take more advantage of

- the usual ADI strategy of changing At to damp the error over a range

of eigenspaces.

Our other minor changes, such as replacing the factor 1/4 in strat-
egy I>by the factor 1/5, etc., were introduced mainly for the pur-

pose of never repeating the same At so as to never get in a rut.

Nevertheless, computational efficiency seems to be largely indepen-
dent of these minor changes. 1In Section XI we will examine some

examples which justify in part these remarks.




3.1

ITT. ELLIPTIC EQUATIONS WITH GRADIENT
DEPENDENT COEFFICIENTS

3.1 Introduction

In this section we study nonlinear elliptic operators L corre-
sponding to the discretization of the elliptic partial differential

equation
£v—cv'=s,» (3.0)

in a bounded region Q € Rz. The operator £ is in the divergence form,

L =V + (aV), where the coefficient a is a positive function of Vv. The

sourcé term s is a function of position and ¢ is a nonnegative constant.
The following equations are special cases of (3.0) énd are of

major interest in our numerical study:

(L) The minimal surface equation.
Ve(aWw) =0 in Q,

where (3.1)
a= 1+ |w|H2

The function v is required to satisfy a Dirichlet boundary condition on

0. Numerical tests with this equation are presented in Section VI.
2) The capillary surface equation.’
Ve (@W)-cv=2H in Q, (3.2)

where @ is the same function as in equation (3.1), H is a constant and

c = 0.
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The boundary conditions are given by the "natural" Neumann

boundary condition

a %%—= cos(0) on 39, (3.3)

where 0 is the natural angle of contact, a physical characteristic of the
fluid and its molecular interaction with the wall substance of the capil-
lary tube, and where V is the outward normal to the boundary 3. Observe
that for ¢ = 0, equations (3.2) and (3.3) will guarantee a unique solution
only up to an additive constant. This singular case did not seem to re-
quire any particular treatment in our numerical tests in Sections VII and
VIII, though in some instances it was more convenient, and perhaps slight-
ly more efficient, to normalize the solution after each double-sweep by

shifting it so that its minimum value is equal to zero.

3) The magnetostatic equation.
Ve (aVW) = s in Q,
(3.4)
v = g(x,y) on 99.

Typically, the magnetic source term s, corresponding to the presence of
electric currents in the magnetic coils, is given as a step function on

Q, and the coefficient function 4 is given by

a=(e+|vv|2)/ (1 +]w]?)
in that portion of § corresponding to an iron core, and (3.5)

a=1 in the remainder of Q.
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Here € is a very small constant; in our tests €==10"4

choices of the source term s force a(Vv) to range over nearly the entire

interval (g,1). Ordinarily this makes the problem a rather highly non-

linear one.
(4) Magnetostatic problems for actual cyclotron design.

This problem is the same as (35, with the exception that the co-
efficient a is now given as a monotone increasing piecewise linear or
spline function of ]Vvlz interpolating a table of measured values. Be-
cause a([Vvlz)is highly nonsmooth, this problem proved to be computa-
tionally the most difficult. (Seé Section IX for computational test

examples.)

3.2 The discretized equations

We now discuss the discretization of equation (3.0), as intro-
duced by Concus in [6], for the case in which the coefficientla is a
function of IVVI. The partial differential operator £ is thus replaced
by a finite difference oﬁérator L. Because the coefficients of £ have
gradient dependent coefficients its discretization L (and hence the
Fréchet derivative L' of L as well) depend on a 9-point rather than 5-
point patterﬁ at each grid point. In Section 3.4 we will be required to
derive "approximations" L* to the true derivative L which do correspond
to a 5;point pattern and hence to a convenient "two directional" L* =Af
+ B* decomposition as desired. The discretizarion discussed here is

limited to the case of a square grid with uniform grid spacing h.

- Notice that many




3.4

We introduce the notation P1l, P2, P3, P4, P5, P6, P7, P8, and
P9 to correspond to the grid points (i-1,j-1), (i,j-1), (i+1,j-l),v
(i+1,3), (i+l,j+1), (1,3+1), (i-1,3+1), (i~1,3), and (i,j). See Figure
3.1. We write vl for v(P1), v2 for v(P2), and so on. We designate the
cell with corners at Pl, P2, P9, and P8 by el; ¢3 is the cell with cor-
ners at P2, P3, P4, and P9; ¢5 is the cell with corners at P9, P4, P5,
and P6; and finally c7 is the cell with corners at P8, P9, Pé6, anva7.
The centers of the cells cl, c3, c5, and c7 are denoted by tl1, t3, t5,
and t7 respectively. The "auxillary cell" with non-grid corners tl, t3,
t5, and t7 is denoted by c9.

In each cell ¢, one first approximates ,Vv]z by its discretized
value ]Vv]cz at the center of that cell. This is done by replacing vx2
by the average-% [(vxz)s+ (sz)n] and by replacing vy2 by the average
%.[(Vyz)w+(vy2%J’ where (vx)s and (vx)n are the central differences of v
along the south and the north sides of the cell ¢ and where (vy)W and
(Vy)e are the central differences of v along the other two parallel

sides of c¢. Thus for c=cl, 'Vv[ci is given by

'V""il ) % [(vst—lw)z N (v1;v2)2
+ % [("9;'1"2)2 + ("8;1"1)2] ) | (3.6)

Over the entire cell c, the coefficient function & is then approximated
by the constant value a(IVvlC). We will be using the notation al, a3, a5,

a7 to correspond to a(lelcl), etc.
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Using the above step function as an approximation for a, the
difference equation at P9 is derived by integrating both sides of equa-

tion (3.0) over the auxillary cell ¢9 and employing the divergence the-

Oorem

) v .
, +! tf v e (3.7)
1 3 t5 t7

Approximating the normal derivatives in (3.7)" by the corresponding cen-

tral differences, the difference equation at the center point P9 is thus

given by
(al+a3) (112—u9)h + (a3+a5) (u4—u9)h
2 h h
+ (aS;a7) (u6—119)h + (@l 1;a7) (48-u9. 8—u9)
- c¢hiug = n? s9, (3.7)
where

h2 s9 = h2 s(P9) = '/:/.s dx,
o

and where u has been used to denote the solution of the resulting differ-
ence equations.

Let w be the vector of neighboring values of u,

= (ul,u2,u3,u4,u5,u6,u7,u8,u9),
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and define E{(w) by

E(w)=v% [(al+a3) (u2-u9) + (a3+a5) (ub-u9) + (a5+a7)(u4—u9)-+(a1+a7)(u8—u9ﬂ,

then equation (3.7) can be written as

E(w) - ¢ h2 ug9 = h2 s9. (3.8)

At nodal points of the boundary 92, where natural boundary condi-
tions, equatioﬁ (3.3), are required, one derives a somewhat different
equation. Referring to Figure 3.1, suppose that P9 is on a straight por-
tion of the boundary 9Q and that P1, P8, and P7 are exterior points of Q.
Then, integrating the differential equation (3.0) over the right half of
the auxillary cell c9, one obtains the difference equation

2 2

%} (u2-u9)4—(éégééﬁ(u4-u9)4~%? (u6-u9) +h cos(8) - ¢ D§—u9 = %?js9. (3.9)

Finally, if P9 is a southwest corner point, then the difference

equation becomes

5 5 n2 h2
:;—— (ut-u9) +§—- (u6-u9) +h cos(8) - ¢ 7— u9 = o 89 (3.10)

For some ordering of the nodal points of Q (for example, the
usual horizontal bottom to top ordering) one thus obtains the discrete
elliptic equation

Lu = £, (3.11)

which corresponds to the totality of equations (3.8), (3.9), and (3.10)

as P9 runs over all the nodal points with such an ordering.
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- 3.3 The linearized equations

Since the nonlinear terms in equation (3.9) or (3.10) can be

derived from E in (3.8) by simply Setting.some of the a's there equal

to 0, it will be sufficient therefore to consider only the case in

which P9 is an interior nodal point of Q.

Regarding E in equation (3.8) as a map from R9 into R, the lin-

n

earization of E at w = w* & R° is given by

Tw) = EG™) + E' (™) + (w-w"),

where E’(w") is the gradient of E at w'.

(3.12)

We next calculate E' at w = (ul, u2, u3, u4, u5, u6, u7, u8, u9).

2
Suppose now that a is a function of IVVI and let us denote

E!

al’

Dij

The components of E

E1l'

E3'

E5'

E7’

(E1’,E2',E3',E4',E5!,E6',E7' ,E8,E9"),

f

o i, e o oo

(ui-uj)/h, 1,j = 1,2 *++ 9,

are then given by

al’

= —5— (D89+D29) (D18+D12),
a3’ '
= —5— (D29+D49) (D32+D34),
a5’
= =5~ (D49+D69) (D54+D56),
’
- a_;_._ (D69+D89) (D76+D78),
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E2' = 11_-;_&1_3_ + i’%——' (D89+D29) (D29+D21) + %' (D29+D49) (D29+D23) ,
E4' = &;&‘3 + 3%1 (D294+D49) (D49+D43) + %i (D49+D69) (D49+D45) ,
E6' = 532"37— + 5"-3—’ (D49+D69) (D69+D65) + 5’-‘—%-—" (D69+D89) (D69+D67) ,
pg ' = 2tal %1 (D69+D89)(ﬁ89+D87) + a—;-’ (D89+D29) (D89+D81)
E9 ' = - (al+§3+a5+a7) - %'—(D89+D29)2 - % (D29+D49)

(3.13)

! ’
- 230494269 - 2L (p694pg9)2.
Equations (3.13) with E9 ’ replaced by E9 ! - gh? ¢ (where o assumes
the values 1, 1/2, and 1/4 depending on the interior, boundary, or cor-
ner location of P9), completely determine the Jacobian or the Fréchet

derivative L’ of the nonlinear operator L in (3.11).

3.4 Approximate linearization methods

The dependence of equation (3.12) on a 9-point pattern instead
of the usual 5-point pattern, makes it rather difficult to decompose L’
into A + B, as in Section IT, with A and B being negative definite and
easily invertible.

We study next several options for replacing the true derivative
L' by an approximate derivative L* = A* + B* corresponding to a 5-point
pattern. In these approximations we will be using E* to denote an
"approximate derivative" replacing the true derivative E'. Such a 5-

point pattern will be achieved by requiring the vanishing of the cornmer
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* % * % * *
components E1 , E3 , E5 , and E7 . The decomposition A" + B will then
. *
correspond to the decomposition of the pointwise operator E into

% * *
E =X + Y vwhere

% *
= (0,0,0,E4", 0,0,0,88", -(£4*+z8")),

L]
|

<
i

* * * *
= (0,E2, 0,0,0,86 , 0,0,-(E2"+R6")).

Notice moreover that A* is composed of certain irreducible sym-
metric tridiagonal submatrices (one for each "horizontal grid line'").
Each of these will be ﬁegative definite if all the coefficients E4* and
E8*are positive; excluding the case of the capillary surface equation
with ¢ = 0 of Section 3.1 (for which case these submatrices may be only
negative semidefinite). This follows by a well known theorem on $S-

matrices [12].

Option I (frozen coefficients)

Here one assumes that a has the almost constant value a(Vun).
That is, one merely sets al’ = a3’ = a5’ = a7’ = 0 in equations (3.13).

*
The approximate derivative E then has the components

* * * *
El =E3 =E5 =E7 = 0,

% %
BaT = a3;a5 , r8” = al+al,
% *
B6 = aS+a7 , g2” = al+a3,
2 2
%
E9 = -3l - 33 - 35 - a7.

% % % : *
Notice that the off-diagonal coefficients E2 > B4 , E6 , and E8 are

clearly positive as desired.
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This type of approximation is widely used in other iterative
methods. In [13], a point SOR method was employed to find the solution
for the magnetostatic equation (3.5). This type of frozen coefficients

linearization was used there; however, it required underrelaxation of

the a's for stability.

Option II (approximate linearization of differences)

A second possible approximate linearization L* = A* + B* with a
5-point pattern, is obtained by assuming in the expression E of equation
(3.8) that the dependence of E on the differences ul-u2, u2-u3, u3-u4,
u4-u5, u5-ub, ub-u7, u7-u8, and u8~ul involving the corner points P1, P3,
P5, and P7, is small relative to the dependence of E on the remaining
differences u9-u2, u9-u4, u9-ub, and u9-u8. Under that assumption, the

% . ..
components of E become (recall that Dij stand for EEEEl, i,j =1,2,++-9)

* * * *
El =E3 =E5 =E7 =0,

* r r
BL" = aBZaS + (a3 Z a5 )(D49)2,
% ! '
£8” = a7;al + (a7 ; al )(D89)2,
v (3.15)
* r 1
E6" = 35;a7 + (a5 ; a7 )(D69)2,
% ' ’
E2 = §l§§§.+ (ﬂl;g_éé )(ng)z’

* %
E9” = - ®4"4m8%) - (m6*+m2").

We next derive a sufficiency condition on the coefficient a which
* %
will guarantee the negative definiteness of A and B . It was pointed
* * 3 ] 3 3
out previously that A and B will be negative definite if the off diag-

* * *
onal terms E2 , E4 , E6 , and E8 are all positive. A convenient
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sufficient condition for the positivity of these terms turns out to be

that

2wa'tw+a(w >0, for all w >0. (3.16)

Let us now prove this assertion by examining the positivity of
. ’ & *
the typical term E4 . Notice first that E4 1is certainly positive if a'
is positive (recall that a is always assumed positive). Suppose on the

*
other hand that a’ is negative. Then E4 is positive if

a3w3) + a3’ w3) (0492 >0,  and

(3.17)
a5(w5) + a5’ (w5) (049)% > o,
where
w3 = % [(D49)% + (092)? + m23)% + (D34)2],
ws = 2 [(049)% + (096)% + (065)% + (D54)?].
However, by hypothesis (3.16) we have that
a3(w3) + 2 w3 a3'(w3) > 0, and
(3.18)

a5(w5) + 2 w5 a5'" (w5) > 0.

Then, replacing 2 w3 and 2 w5 in (3.18) by the even smaller (D49)2, these
two expressions still remain positive as desired in (3.17). This com—
pletes the proof.

Notice that the sufficiency condition (3.16) is satisfied if and

1/2

only if w a(w) is monotone increasing. That is, iff

w22 a@w2) > wi? a@l), for all w2 >wl > 0. (3.19)
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It turns out that condition (3.19), or equivalently (3.16), 'is
satisfied in all cases (1) through (4) of Section 3.1. Thus for the
minimal surface or the capillary surface equation, where a==(1+w)_l/2,
clearly (3.19) holds true. For the magnetostatic equationm,

a' = (1- e)/(l+w)%>() in the iron core, and a'= 0 elsewhere. Thus (3.16)

is satisfied at every cell center tl, t3, t5, and t7. In case (4), a is

given as a monotone increasing tabulated function of w and thus satisfies

(3.19).

Option III (approximate linearization of the differential equation)

Starting from the differential equation (3.0), one regards the
vector valued function (0,B8) = a(Vv) Vv as a vector function of the vari-
\ , n n n_n
able (p,q) = (Vx’vy) and linearizes about the point (p ,q ) = (vx,vy).

Denoting a(pn,qn) by an, we then have

a = a(p,q) p
= p" + (@ + @ P () + (ag P (a-aD),
' (3.20)
B = alp,q) q

=a® g+ (@ "+ (a; a) (p-p™) + (an+a2qn> (a=q™).

To avoid the appearance of cross derivatives when one later takes the
divergence axi-By in (3.20), we further approximate o and B by

n
a® o + (@ + ag ™) (p-p ),

IR

(o8
(3.21)

B=a’ " + (" + “2 a (g-¢M).




3.13

Suppose now that a4 is a function of |Vvl2 and let a’ denote the

derivative of & with respect to ’Vvlz, one thus obtains from (3.21)
~ oD
a=a’ p"+ y(p-ph,

B=a q" + 8(q-¢M,

where

y=d+2 v a)",

(3.22)
§=da+2 (v 2 an,
y
The divergence of (0,B) can then be written as
div(a,B) = o + By
o n - n _n
= (ax + By) + (Y(vx Vx))x + (G(VY Vy))y- (3.23)

One then discretizes the right hand side of (3.23), using inte-
gration over auxillary cells, the divergence theorem, and other arguments
similar to the development of the discretization of Concus described pre-~
viously.

. . . * % *

In this way one obtains an approximate derivative E =X + Y

*
corresponding to a 5-point pattern, where E has the components

* * * *
El' =E3 =E5 =E7 =0,
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54" = ﬂ;—a‘i + %’ [(32)%+ (D49)2] +—a-§—' [(056)° + (D49)2],

mg" = 2lfal , 27 [76)2+ (D89)2]+i%-'_5 [(012)%+ (D89)2],

B6" = 22l B [s4)2+ 69 %1+ [078)2+ (06921,  (3.24)
Bp" - 2ltad | & [@18)2+ (p29) ) +23 [034)2+ (029)?1,

B9 = - (84°+E8%) - (=6 + m2%y,

% *
Once again it is easy to see that A and B will be negative
definite if the sufficiency condition (3.16) holds. The proof is quite
similar to that used for Option II. The following two options are vari-

ations of Options IT and IIT.

Option IV

The nonzero components of E* are obtained in this Option from
the corresponding ones in Option II by simply replacing (D49)2, (D89)2,
(D69)2, and (D29)2 by double their values. This will make more
sense if we notice that the same E* can also be obtained from Option ITI
by approximating (i.e., replacing), in equations (3.24), (D32)2 and
(D56)2 by (D49)2 in the expression for E4*, and by replacing (D76)2 and
(D12)2»by (D89)2 in the expression for ES*, etc.

Note that for Option IV the condition (3.16) is no longer suffi-
cient to guarantee the negative definiteness of A* and B*. (This is
easily seen by looking once again at the proof of the sufficiency of

(3.16) for Option II.) However if a' > 0, as for example occurs for the
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magnetostatic equation but not for the minimal surface equation, then

* % .
it is clearly always the case that A and B are negative definite.

Option V

The approximate linearization here is obtained by replacing both
Y and § in equation (3.22) by their average (y +8)/2, then proceeding
with the derivation of Option IIT under that assumption. Thus if wl,
w3, w5, and w7 denote the discretization of IVVI2 at the centers of the

cells cl, c3, c5, and c7 respectiﬁely, that is,

wl = %.[(Dlz)z + (29)% + (098)2 + @817,
w3 = % [(923)2 + (D34)2 + (D49)2 + (D92)2],
(3.25)
w5 ='% [095)% + (45)% + (D56)2 + (069)°1,
w7 = % [(089)% + (D96)? + 67)% + 78)%1,
' %
then the components of E are given by
* * % *
El =E3 =E5 =E7 =0,
* a3+a5 , a3’ a5’
B4 = =522 4 5 W3 + =5 w5,
! !
mg’ - 2fal, a7l 2,
(3.26)
*  a5+a7 , a5’ a7’
B6 = ==+ S w5 + 5wy,
* _al+a3 , al’ a3’
E2 _—-—2———+2Wl+ 2W3:
* * * *
Eg* =-(E4 +E8) - (E6 + E2 ).
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Note that for this Option, the sufficiency condition (3.16) once again
guarantees the negative definiteness of A* and B*.

The most simple minded possibility for replacing the true deriva-
tive L' by an approximate derivative L* = A* + B* corresponding to a 5-
point pattern,'is to assume a weak dependence of E on the values of u at
the corner points P1, P3, P5, and P7 (rather than on the values of the
differences of u involving these corner points, as in Option II). That
is, in equations (3.13) one merely replaces E' = (E1', E2', E3', E4',
ES", B6', E7', E8', E9') by E" = (0,E2', 0, E4', 0, E6', 0, E8', E9').
One can see from (3.13) that the off diagonal terms E2', etc., can then

. * *
often assume negative values. Thus A and B would usually not be neg-

ative definite with this simple minded approach.

Remarks

1. Nonlinear point SOR, Concus [6]. Combined with SOR to approx-—
imately solve the linearized equations, the épproximate linear-
ization E* is given by E* = (0, 0, O, O,.O, 0, 0, 0, E9') (refer
to (3.13)). Here L* is diagonal so does not need a "two-

directional" decomposition,

2. Nonlinear horizontal line SOR, Concus [7]. Combined with SOR to
*
approximately solve the linearized equations, E 1is given in this
* *
case by E = (0, 0, O, E4, 0, 0, O, E8', E9'). Here L already

* %*
has a "one-directional" decomposition L = A + 0.
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Option IV was not tested numerically. Option V, with coefficients
2
depending on IVUI only (compare with Options II and III), is

about as simple as Option I to implement computationally.

A numerical comparison between the first three Options is carried
out in Section VII, employing the capillary surface equations as
a test problem. All three Options worked well, however Option

IIT was somewhat superior to the other two Options.

Option I worked somewhat better than Option III on a capillary
surface problem. The problem was designed such that the constant
¢ 1is zero (zero gravitation). The region () was an elliptical

domain with a highly nonuniform mesh spacing. See Section VIII.
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IV. THREE DIRECTIONAL DYNAMIC ADT

4.1. Introduction

In this section we extend the results of Section II to the linear

elliptic equation

lu=(A+B+C)u=f in Q, (4.0)

where f is given and A, B, and C are negative definite linear operators.
In the nonlinear case, the decomposition A + B + C should correspond to
L', the Fréchet derivative of L.

Such "'3-directional" generalizations correspond to 3-dimensional
elliptic problems or to 2-dimensional elliptic problems with a triangu-
lation of  corresponding to a hexagonal paftern. (See Richtmyer [5].)
In either case, the difference equation at each interior point of
has a 7-point pattern instead of a 5-point pattern.

In 2-dimensional cases, the finite element method appliéd to
elliptic equations with piecewise linear functions on an extremely non-
uniform triangulation of Q (i.e., one with interior angles which differ
greatly from 60°) often does not give rise to negative definite oper-
atoré A, B, and C of tridiagonal structure. It turns out, however, that
if the triangulation of { is such that no triangle has an angle greater
than or equal to T/2, then the decomposition of L to three negative def-

inite operators is usually possiblé.
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One major advantage of triangulating  uniformly and using 3-
directional methods is that for some elliptic operators, such as the
Laplace operator, the truncation error is 0(h4), whereas it is O(hz) for
the 5-point pattern; see [5], p.208 for ekample.

For nonuniformly triangulated regions, for non-constant coeffi-
cients, or for nonlinear equations, the O(h4) accuracy does not hold.
Nevertheless, solving nonlinear elliptic differential equations in 2-
dimensions (of the type studied in Section II) with discretizations
corresponding to a hexagonal patfern could still be advantageous. One
great advantage is that the Fréchet derivative here automatically de-
composes into three tridiagonal operators A, B, and C (which are usually
negative definite). One therefore does not need to use approximate
linearization methods, as in Section III, that do not employ the true
Fréchet derivative. .(Consequently, one might expect a better rate of
convergence in the iterative process. Another great advantage, of
course, is that one can often more closely model the boundary oQ with a

triangulation of . See [2].

4.2 Analysis and the choice of a stepsize strategy

The ADI approach is to first convert (4.0) heuristically to the

parabolic problem

c (A+B+C)v-~-£f, t>0,
(4.1)

v o= u0 at t =0,

<
Il

whose steady state (t = ©) solution solves (4.0). One next proceeds to

discretize (4.1) in time. For some time-discretization scheme, let At
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be a time stepsize and let u” denote the discrete solution of (4.1) at
time tn. The discrete solution at time tn + At is denoted by un+l.
The Douglas-Gunn scheme [3], based on the trapezoid rule for the

time discretization of (4.1), is given by

At [(A+ B +C) " - £], ' (4.2)

ntl _ n -1
u =u + H1/2
where the operator H1/2 is given by
Hl/2 = (1-s A1 -s5B)A-s20C),

s = At/2. . (4.3)

% %k
In terms of two intermediate variables u and u , equation

(4.2) is decomposed into three equations as follows:

* * _
u - u'=sA(u+uM)+ s B@@+uM)+s cu®+u™ - At f,

% *k
sA(u +u™+ s B(u +ud) +s C(un+un) - At £, 4.2)!

[~
!
(=
il

1
(=1
]

* %k ,
un'-l n gsA(u +un)+ s B(u +un)+s C(un+l+un) - At f.

Equations (4.2)' can also be written in the simplified form

* %
v -ut=s A -uM)+ At (A+B+C)u” - At £,

*k %
s B(u -uD)+ t -u", %.2)

[
i
[~]
]

-+ *%
n+l n _ s C(un 1—un)+u _un.

=1
|
[
|

Equations (4.2)" are better suited for automatic computations.
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Another Douglas-Gunn scheme for the time discretization of

equation (4.1), is based on the backward Euler rule and is given by

+1 - ¢
L SR Hll At [(A+ B+ C) u®-£], (4.4)

where the operator Hl is given by

H1 = (1 - At A)(1 - At B)(1 - At ©).

The equations corresponding to (4.2)" are then nearly the same, but with
the s factor replaced by At.
Both of the Douglas—-Gunn schemes (4.2) and (4.4) are the extreme

cases of the one parameter family of unconditionally stable schemes

R S H;l At[(A + B + C) u" - £1, (4.5)

where Hm is given by

(1-rA)@Q-rB) (1-1rcC),

fax]
]

2]
n

w At, %<w<1.

Another scheme for the time discretization of (4.1) is the

"factorization scheme". This is given by

n+l

(1 - At A) (1-AtB) (1-AtC)u™ = (1+AtA) (1+AtB) (L+AtC)u” - 2 At £. (4.6)

Equation (4.6) is simply a straightforward analogy of the the 2-direc-

tional ADI scheme .
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Notice, however, that if a steady state solution un+l =u" =uqu

is attained for the factorization scheme (4.6), then this steady state
is not a solution of the desired equation (4.0). In fact, writing (4.6)

in the form

. 3 ,
P2 AtHll [(A+ B+C)u™ - £+ At® ABC uP],

where Hl is given in (4.4), we see that such a steady state solution would

_satisfy the equation

(A+B+C) u = £ At ABCu.

One might think that this order At2 error is negligible in our
computations (and that might be the case for parabolic problems), but the
whole point of ADi type methods for solving elliptic equations is that we
will often be using extremely large At in order to reach equilibrium
quickly. We will therefore not be interested in such schemes which do not
seek the true equilibrium.

The formulations (4.2), (4.4), and (4.5), on the other hand, have
the advantage that u is the solution of (4.0) if and only if un+l = u®=u
is a steady state solution of either (4.2), (4.4) or (4.5).

Next let us derive the error equation for (4.5). Setting

un+1 =u" = u in (4.5) gives the identity

u=u+ H;lAt[(A+B+C)u-f].

Subtracting this from (4.5) and writing en==u-un, one gets the error

equation
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L [1+ H;l At (A+B+C)] e ‘ 4.7)

Now, as in thé,analysis of the 2-directional case, one assumes,
for the sake of deriving a stepsize strategy, that the operators A, B,
and C are symmetric, negativé definite, and commuting (hence they have
common eigenspaces). We also assume, once again merely for the sake of
analysis, that the error e at each step n is concentrated in only one
eigenspace; that is, that e is an eigenfunction for A, B, and C corre-
sponding to eigenvalues -a, =-b, and ~c respectively.

Under the assumptions made, the convergénce factor CF and the
test parameter TP, similar to those defined in Section II, can now easily

be computed as functions of a At, b At, and ¢ At.

Notice first that the error equation (4.7) now gives the reduc-

tion factor R as follows:

nt+l (at+b+c) n
e e Ty Y eFtxa y i

(4.8)

]

R(a At, b At, c At) &"

b

where

r = wAt, —;—'<w <1.

Now, for fixed a, b, ¢, and w, we shall try to adjust At so as to
nearly minimize the reduction factor R. For fixed w, it is easy to show

that

&8 for a =b = 0, the range of R is maximal and is given by

the interval (1 —-%, 1,
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(2) P =  max [ min R(a At, b At, c At)]
a,b,c >0 At >0

= 1 - ——

9w °

One begins the proof of (2) by'showing that this "max-min" occurs
when a, b, and ¢ are all equal. In fact, the value of At that minimizes

R for given a, b, ¢ is the only positive root of the cubic equation
3 2
2 abc r” + (ab+betca) r” - 1 = 0; r = wAt.

Substituting this root, one sees that min(R) is a symmetric function of
a, b, and ¢. Then, based on symmetry considerations or otherwise, one
sees that max min(R) must occur for a = b = ¢. The value of At satisfying

the max-min problem is then given by

-1
At = 2aw 2bw 2cw °

Thus, for the backward Euler scheme, w = 1, the range of R is a
subset of (0,1), and p = 5/9, whereas for the trapezoidal rule, w = 1/2,
the range of R is a subset of (~1,1), and p = 1/9. Thus, one might expect
that the scheme with w = 1/2 is more susceptible to a good DADI stepsize
strategy than the w = 1 scheme. We shall therefore consider only the
case W = 1/2 in the following derivation of the test parameter and the

convergence factor.

In analogy with Section II, we shall advance from " to un+1 with

an ADI triple-sweep of stepsize At, then from un+l to un+2 with stepsize
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m At (for example m = 1 or m = 3). Then, strictly for bookkeeping pur-
poses, we shall back up and advance from " to E'n+2 with an ADI triple-

sweep of stepsize (m+l) At and compute the test parameter

TP = " un+2 _ E-n+2 “'/'l un+2 . ”

- " en+2 _ En+2 "/ “ en+2 _ et N ) | 4.9)

Under the assumptions made, one has from equation (4.8) that

n+2

n+l
e

R(am‘At,bm At,cm At) e

R(am At,bm At,cm At)R(a At, b At, c At)e™. (4.10)

Thus, the absolute value of the convergence factor CF and the test param-

eter TP are given by

_ n+2 n
jor| = | /]
.= |R(am At,bm At, em At) R(a At,b At, ¢ At)’ s
(4.11)
TP = CF - R(a(m+1) At,b(m+1) At,c (m+l) At)
- CF-1 :

We next fix m in equations (4;11) (we will consider both m = 1 and
m = 3) aﬁd study graphically the simultaneous behavior of the convergence
factor CF and the test parameter TP as functions of At, for all ratios ofv
the eigenvalues a, b, and c. Notice first that it suffices to normalize
and consider only those values of a, b, and ¢ for which 1 = a 2b=2c. In

the computer generated graphs, Figures 4.1 through 4.12, we then plot CF
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and TP as functions of At for different values of b and c. (Notice that
here we plot CF and not CFl/2 as in the graphs of Section I1.)

We have chosen to display the graphs for (a,b,c) equal: (1,1,1),
(1,1,.1), (1,1,.01), 1,.1,.1, (1,.01,.01), (1,.01,.001). These gréphs
were plotted first with m = 1, Figures 4.1 through 4.6, and then with
m = 3, Figures 4.7 through 4.12. Of course we actually studied a larger
number of graphs, corresponding to many diverse values of (a,b,c).

Notice that the graphs of CF (on a logarithmic scale) show "wells
of fast convergence'" which are deeper for m = 1, but which are broader
for m = 3. Thus‘with m = 3, the chances that one would choose a At in a
region of fast convergence seem greater than withm = 1. In fact, with
our At, 3 At, 4 At time policy, we probably take more advantage of the
usual ADI strategy of changing At to damp the error over a range of eigen-
spaces. Certainly one should not increase m to too great a value; in that
case the test parameter would probably not very sensitively detect the
regions of fast convergence.

One also sees in these graphs, or directly from the relations
(4.11), that near both extreme values of At, O and ©, the values of the
convergence factor are nearly 1, whereas the test parameter is nearly 0
for small At and slightly less than 1 for large At. (Actually, for large
At TP approaches the limiting value 1 - m?

[ A, .)
(1+m) ? (14n2)

Notice also that while CF remains always below the value 1, the
TP, on the other hand, can assume values larger than 1 as for example in
the case where (a,b,c) = (1,.01,.001). Thus an overall uniformity of the
simultaneous behavior of CF and TP as functions of At certainly does not

exist.
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Nevertheless, these graphs universally show that it is possible
to make the CF decently small by choosing At in such a way that the TP
falls within a certain range. Indeed, one can see that for those values
of At for which the TP lies approximately in the range (.1,.4), the cor-
responding values of CF are decently small, Interestingly enough, this
is about the same range as that of the 2-directional case.

In our computations we have followed the same strategy for the
change in At which was devised for the 2-directional case. This makes
sense because by coincidence, both the 2-directional case and the 3-
directional case turned out to have almost a common range of fast con-
vergence; namely, when TP falls in the interval (.1,.3). It seems, how-
ever, that it might perhaps be possiblé to improve slightly on such a 3-
directional strategy.

It is worth noting here that in Section X we study a 4~-direc-
tional test example that adopts the same strategy, even without bothering
to plot TP versus CF as functions of At. Surprisingly enough, this
strategy appears to give a rapid convergence in our small number of

trial rums.
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V. GENERAL REMARKS ABOUT OUR
COMPUTATIONAL EXPERIMENTATIONS

5.1 Terminology and comments

(1) DADI step.

Recall that if k is the number of "directioms" or operators
appearing in the decomposition of the elliptic operator L, then each
single DADI step consists of two k-sweeps with stepsizes At and m At

plus one k-sweep (for bookkeeping purposes) with stepsize At + mAt.

(2) Time policy and initial choice of At.

For each choice of the value of m in (1) above, the correspond-
ing time policy is referred to as At, m At, (m+l) At. For example:
At, 3 At, 4 At.

Starting the computation with an extremely small At would ordi-
narily cause an immediate increase in the value of At in the subsequent
steps. The corresponding value of the convergence factor will often be
nearly 1. The initial choice of an extremely large At, on the other
hand, will cause the wasteful rejection of several consecutive steps be-
fore the appropriate adjustment of At is reached. In most of our prac-

tical problems, a good choice of initial At was 1, a poor choice was

(3) Test parameter TP, convergence factor CF and strategy.
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The TP and CF are already defined in Sections II and IV for
two and three directional problems. The extension to higher directional
problems is obvious. A good working strategy is also given in Section
II. Recall that this "strong" strategy calls for the partitioning of
the range of TP into seven disjoint intervais: (0,.05], (.05,.1],
(.1,.3, (.3,.51, (.5,.66], (.66,.75], and (.75,©). The corresponding
changes in the stepsize At (for the next DADI step) is then given by the
factors: 8, 4, 2, 1/5, 1/7, 1/11, and 1/17‘respective1y. Finally, the
stability safeguard of the strategy requires the step to be rejected if
TP exceeds the value .66.

Notice that sometimes the step is rejected by our method even
though the corresponding value of CF turns out to be quite a bit less‘
than 1. It might be possible to avoid rejecting such steps by keeping a
constant check on other parameters which monitor the course of conver-
gence, such as the "residual”. We think, however, that only a small
gain, if any, would be accomplished by such a practice.

In many other instances, the step will be accepted by our
method even though the residual increases on this step. This is no
cause for alarm and rejecting the step in these instances would not be
at all advisable. The situation here is perhaps reminiscent of the case
in which to go from a local minimum to the global ome, is by overpassing
a local maximum.

This "stfong" strategy was adopted for most of the computa-
tional examples presented in this paper. A slightly weaker strategy,

however, was used for a few of these examples. In this weaker versiom,
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both the partitioning of the range of TP and the factors by which At
changes remain unaltered; however, the step is never rejected no matter
how large :the TP may be.

| This "weak strategy" as it stands, is perhaps not advisable
to be employed computationally without some other additional knowledge
of the problem beforehand. For example, if the decomposition A + B of
the elliptic operator L is such that A and B are actually commuting
operators, then the convergence factor CF is guaranteed to be never
1a§ger than 1. In such a case, the use of this weaker strategy is cer-
tainly safe.

In some other instances, computational experience with some
examples of problems resembling the problem at hand is recommended be-
fore attempting to use this weaker strategy. Otherwise, we are afraid
that starting the computations with a relatively large initial At com-—
bined with use of this weaker strategy might lead to extremely poor con-

vergence or pherhaps to an immediate divergence.

(4) Error, relative error, and residual.

These are defined at the nth step, as computed in our numer-

ical examples, by

o™ - u I,

error =
relative error = || ut - n—1” /llun”,
residual = H Lun_l/2 - fII,
where un—l/2 is the result of the first k-sweep, which is carried out

with stepsize At. Here u is the true solution of Lu=f, however, it
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usually is not known a priori. One could, of cburse, for test purposes,
first find the true solution to great accuracy by doing many steps. One
- could then back up and start the computations anew, and thus be able to
compute the error and hence the convergence factor. Nevertheless, we
have not bothered to do it this way. Instead, since our method has
always tended to converge fairly rapidly, we take the "relative error"
to be a fairly reliable indication of the true error.
In this paper we will give only a few examples in which the

exact solution is known beforehand and for which, therefore, the exact
error and CF can be computed as well. These particular examples are

presented in Sections X and XI.

(5) max(u), min(u), lull, and | vull.

These values are often computed and printed out after each
step. By glancing at these values, one is often able to judge how well
or how poorly the problem has converged. Note that these values are
taken only over that set of nodes of § in which u is unknown (i.e., ex—

cluding the Dirichlet portion of the boundary nodes) .

(6) Initial approximation uo.

This is usually taken to be identically zero. In Section VI,
u0 was taken as the harmonic continuation of the boundary data, and in

Section X it was taken as uniformly distributed random numbers in (0,1).
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(7) Approximate linearizations.

These are discussed in Section III as Options I through V.

(8) Scaling type.
Instead of finding the steady state solution of

v, = Lv - £, (5.1)

one can scale the left side of (5.1) by the coefficient "E", and finds

the steady state solution of

P v, = Lv - £. (5.2)

Here a4 is a certain "local average'" of the values of a and a’.

In our numerical examples, we will refer to (5.1) as "scaling
type I", and to (5.2) as "scaling type II". It was noticed that the use
of (5.2) on the magnetostatic equation with highly nonsmooth coefficient
function of Section IX, has improved the rate of convergence in some

cases by a factor of 2 or so.

(9) Computers and compilers employed in our computations.

The majority of our runs were carried out on the CDC 7600 com-
puter of LBL. Our early runs were compiled by the RUN76 compiler, whereas
the recent ones were compiled by the FIN4 compiler with maximum optimiz-
ing code, OPT. It was noticed that for our problems, the RUN76 compiler
usually took about two and half times more CPU time than the FTN4 com-

piler to execute the same identical problem.
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(10) CPU time.

This is essentially equal to the elapsed time needed to execute
the mathematical part of the program, excluding time for cémpiling, iﬁ—
put, etc. The execution ceases once the problem has converged. Our
criterion for convergence is that both the residual and relative error
are "decently small". Most codes (ours and others) require the relative

-6 -4
error to be less than 10 ~ or 10  as a convergence criterion.

5.2 Comparisons with other iterative methods

The DADI method underwent a rather lengthy comparison with
other iterative methods. In all these comparisohs, our DADI was always
ahead in computational efficiency by a margin that in many cases was
quite substantial. fhe following are some of the methods that were em-

ployed in these comparisons:

(1) Point SOR.

For the magnetostatic problem in Section IX, it was possible
to compare our DADI against point SOR as implemented in the TRIM code of
LBL. The method there requires, for stability reasons, the underrelaxa-
tion of the coefficient function a(Vu) as well as the reduction of the
size of the overrelaxation parameter w (see [13]).

This code, developed for use in actual cyclotron design prob-
lems, is capable of geperating both rectangular and triangular mesh.

Here it is the rectangular mesh that we will be using in our comparison

‘against DADI. It must be clear that only the CPU time elapsed in actually
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solving Lu = f is given in these comparisons. That is, the time taken
in the generation of ﬁhe mesh and the time elapse& in plotting the mesh
and the "equipotentials", u(x,y) = constant, are not included. These are
the two other main computational tasks of the TRIM code in éddition to
finding the solution of Lu = f. Figufe 9.2 shows one such equipotential
pPlot of a test case with an H-shaped magnet which waé used in the compar-
ison in Section IX.

Unlike the 9-point difference scheme used in the DADI method,
the TRIM code uses instead a 7-point pattern difference scheme. How-

ever, both of these schemes are accurate of the order O(hz).

(2) Point nonlinear SOR method.

Combined with SOR, one eSsentially solves (usually once per
sweep) the linearization by Newton method of the nonlinear difference
equations at u(P) for each gfid point P, keeping all other unknowns ex-—

plicit. (See also Section III.)

(3) Line nonlinear SOR method.

Combined with SOR, one essentially solves (also usually once
per sweep) a tridiagonal system of equations resulting from the linear-
ization of the nonlinear difference equations along a "mesh line" keeping
all other unknowns explicit.

In [7], a comparison between the point and the line methods was
carried ogt using the minimal surface equation as a test problem. The
comparison showed clearly the superiority of the line method over the

point method.
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Our DADI computational results of the minimal surface equation
in Section VI, and of the magnetostatic equation with smooth coefficients

in Section IX, should be compared with the corresponding results of the

nonlinear SOR methods as given in [6] and[7].

(4) Generalized conjugate gradient methods with fast direct splitting,
[9] and [10].

Here one essentially approximates the Fréchet derivative L' in

some sense by the Helmholtz operator
H=A-K, where K=>0 is a constant.

The approximated problem is then solved directly using fast solvers, and
the iterative solution is obtained via a conjugate gradient type method.
The combined operations of the direct inversion of H and a conjugate grad-
ient step, form one full iteration of this method. Ordinarily most of the
computations are spent in the direct inversion of H.

The efficiency of this method will obviously depend on how well
H approximate L' and on the existence of a fast cirect solver for an ar-
bitrary domain (nonrectangular domains usually greatly increase the run-
ning time for fast solvers).

A compariéon between our DADI and this method, GCGFDS, was car-
ried out using the capillary surface equation as a test problem. In those
tests, the domain ) was taken as the unit square for which there exist
highly efficient direct solvers. The results of the comparison in the
square case, still favorable to our DADI, will not be shown here, but will

be reported in a later paper.
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For arbitrary domain and uniform mesh spacings, the current

work of W. Proskurowski [14] seems to be heading towards an efficient

direct solver.
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VI. THE MINIMAL SURFACE EQUATION

Recall that our nonlinear operator L corresponds in this case
to the discretization of the differential equation
div(aVv) = 0 - in Q, (6.1)
where
9 -1/2
a= (1+ leI )
The region ! considered here is the unit square (0,1) X (0,1).

On the boundary 3Q, v is required to satisfy

K sin(% (1-x)) on {x =0} X {0 <y<1},

V‘.‘—."
-g-‘gj-=o on {y = 0} X {0 <x <1}, (6.2)
v=0 on the remainder of 9Q.

Notice that the Nemann condition along y = 0, is merely a symmetry condi-

tion.

Our numerical results for different values of the parameter K and
the mesh spacing h are given in the.rather self-explanatory attached
Examples 6.1 through 6.4. 1In ail of these test examples, the approximate
derivative L* results from employing Option III or the approximate linear-
ization of the differential equation (6.1). The initial approximation
u0 in Examples 6.1 to 6.3 was taken as the unique harmonic continuation

of (6.2) into . That is
o =% sin(g(l—x)) sinh(%(l—y))/sinh(g). (6.3)

In Example 6.4 the initial approximation was u0 = 0.
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In all, nine cases were considered in Examples 6.1 through 6.4.
These correspond to mesh spacings h = 1/10, 1/20, and 1/40, and to K =.5,
1.0, and 5.0, which correspond to increasing degrees of nonlinearity of
(6.1) and (6.2) [7]. The observed convergence in the three cases K = 5
and h = 1/10, 1/20, and 1/40 wasvslightly more efficient when starting
with initial approximation uO = 0, instead of u0 = harmonic.

For relative error less than 5><1O_7 and for residual less than
10_7, the number of steps in the case K = .5 was virtually the same for
the three different mesh spacings. For the case K = 5, however, the num-
ber of steps for h = 1/40 was a few steps less than twice that for mesh
spacing h = 1/10. |

In contrast, nonlinear block SOR {7]seems to require for h==1/40,
and for all values of K considered, about three and half the number of
iterations required for h = 1/10.

The overall performance of the DADI method és demonstrated in

detailed Examples 6.1 through 6.4, seems to be extremely successful.
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VII. THE CAPILLARY SURFACE EQUATION

The discrete nonlinear elliptic equation Lu = f arises in this

case from discretizing the élliptic differential equation

div(ayv) - c v =2 H, (7.0)

in a bounded region {2, where

a =+ |w|H12,

and where H is a constant and c is a nonnegative constant.

On the boundary 9Q, v satisfies the natural boundary condition

a ¥ = cos(9) (7.1)

for some given éontact angle 0.
In the case { equal to the unit square (0,1)X (0,1), it is
evident by symmetry that it suffices to determine the solution v only in

the triangular region
Q' = {(x,y): y>0, y<x<1/2}.
For such Q', the boundary condition (7.1) becomes

v _
-a Fvi cos(0)

on that portion of 3Q' in common with 3, and

v _
N 0

on the remainder of 9R'.
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Our actual computational test examples were carried out instead,

on the square region () = (0,1) X (0,1) together with the boundary condi-

tions

a %% = cos (8)

on the west and south sides

{(x,9): y=0,0<x<1}U {(x,y): x=0,0<y< 1},

v

v 0] on the remainder of 5%.

The computations were performed with no reference to the symmetry of the
solution v about the line x = y. It should be remarked that throughout
our computations the operator L*, an approximate derivative of the true
derivative L’ of L, was actually decomposed into three operators A + B +
C, where the extra operator C was essentially a negative multiple of the
identity operator. This operator C corresponds to the term ¢ v in equa-’
tion (7.0) and it was always treated implicitly throughout each single
sweep. |

Before describing the observed behavior of the convergence of
DADI, we will briefly discuss some properties of the solution of (7.0)
and (7.1), which are of interest in analyiing the corresponding behavior
of the numerical solution.

First, notice that if v is the solution of (7.0) and (7.1)
for a given 6, then - v + constant is the solution of (7.0) for the con-
tact angle m-6 in (7.1). Thus, it suffices to consider only the case

0<6 <m7/2. For 0 = 1/2, the solution is identically equal to zero,
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that is, the capillary surface is completely flat. One should thus ex-
pect a rather fast rate of convergence for thebmethod when 6 is near the
value 7/2.

A major characteristic of the solution concerns the rise height
of the capillary surface at the cornef points as a function of 6. Concus
and Finn [8], have shown that if a portion of Q is sectorial with o de-
noting the interior semi-angle of its vertex, then 60 = g-— o is the
critical angle after which the solution v becomes singular at such ver-
tices. Moreover, there exists then a constant K such that lv - w| <K
uniformly in some neighborhood of that vertex, where w is the asymptotic

corner solution given by

o o Leos@®) - &% - sin(9)) 1%
ckr

s

and wheére k = sin(a)/cos(6). The polar coordinates (r,$) are such that
r is measured from the vertex point and ¢ is measured from the axis of
the sector.

For our square region the critical contact angle is given by
90 ='%. Hence, for 0 < § <'%f the numerical solution of Lu = f does
not well approximate the solution of the differential equation in a
neighborhood of the corner singularity. The numerical solution is merely
a solution of a highly nonlinear system of algebraic equations (which does
however attempt to build up a large value at the corner).

The computations presented in this section correspond to

6 = 75, 60°, 45°, and 0°. The constants c and H appearing in equation

(7.0) and the mesh spacing h, in all cases were given the respective
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values 1, 0, and 1/40. Other values for ¢, H, and h, including the

singular case c = 0, were also tested computationally and compared with

other leading methods. The results of these comparisons seem to be highly

favorable to our DADI, however, these results will not be given here. Our

main interest here is rather to compare between the different approximate

linearizations of Section III, as well as verifying some of those theoret-

ical'remarks noted earlier.

The different Options that were involved in these comparisons

are: (1) Option I, or the frozen coefficients approximate linearization,

(2) Option II, which essentially corresponds to linearizing the difference

equations. These are regarded as functions of the differences of the ad-
jacent nodal values of the solution, and differences involving corner
values are discarded, (3) Option III, which essentially corresponds to
approximately linearizing the differential equation itself; here cross
derivatives are discarded.

The comparison between these Options is summarized in Example
7.1 for 6 = 75°, 60°, 45°, and 0°. The convergence criterion required
in most cases was that the relative error be well below 10-6. The values
of the corresponding maximum and minimum of the computed solution u as
well as the maximum of the absolute value of the gradient [Vu| (0,0), are
then given in Table 7.1 to the significant digits shown there.

From Table 7.2, it is obvious that Option III is more efficient
than the other two options, aﬁd in particular more efficient than Option
I. Option II needs not be employed in such problems. Nevertheless, Op-
tion I seems to be-somewhat preferable for other situations.such as those

in which the mesh spacing is strongly nonuniform.
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The rate of convergence of DADI in dependence upon the contact
angle 6 seems to be quite as expected. For example, the number of steps
needed for a decent convergence increases as 6 decreases. It is worth-
while to notice here that for the nearly flat case, 8 = 75°, the frozen
coefficienfs approximate linearization performs just asvwell as Option
I1I, whereas for fhe highly nonlinear cases, Option III seems to perform
up to twice as fast as Option I. Notice also that for 6 = 45°, the
maximum norm of the gradient is approximately 3, while the corresponding
value for the unbounded case 6 = 0°, is about 676, which once more is as

expected. Of course, in all cases the surface is flat at the corner

point (1,1).
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VIII. A ZERO GRAVITY CAPILLARY SURFACE
PROBLEM IN AN ELLIPTICAL REGION

The differential equation here takes the form

div(aVv) = 2 H in Q, (8.1)

where

a= 1+ |w|H2,

The boundary conditions are given, as in Section VII, by the natural
boundary conditions

a g%-= cos(8). (8.2)

A solution of (8.1) and (8.2) will exist only if the following

compatibility condition is satisfied:
[39| cos(8) = 2 H ||, (8.3)

where |3Q| and |Q| are the length and area of 32 and Q respectively.
Here the region that we have in mind is an ellipse with major

semiaxis = a, and minor semiaxis = b. By symmetry, it suffices to

consider a 1/4 of the ellipse; Let § be the region of the x-y plane

bounded by the set of arcs cl, c2, and c3, where

el = {(x,y): y=0, 0<x< al},

X\ 2 ¥\ 2 > S
c2 = {(x,y): ) + (=1, x>0, y >0},
c3 = {(x,y): x=0, 0<y<bh
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For this region, the boundary conditions (8.2) and the compatibility

condition (8.3) become

%§a= 0 on clUec3,
(8.4)
a g%-= cos(6) on c2, ‘
le2lcos(®) = 2 1 |q|. ' (8.5)

Some of our‘computations on this problem are summarized in
Example 8.1. There the major semiaxis a = 1 and the minor semiaxis
b = .2. Along cl 42 unequally spaced mesh points are taken; the mesh
gradually becomeé finer as one approaches the corner point (1,0). The
reason for such a division is that equation (8.1) is much more nonlinear
in a small neighborhood of (1,0) than in the remainder of Q. Along c3,
the corresponding mesh points are obtained using the equation of the
curve c2. The curve c2 itself is then replaced by the convex polygonal
curve c2’, which is constructed by joining those grid points belonging
to c2.

Thus, unlike the case in which 3Q consists only of horizontal
and vertical segments, the discretized domain Q' of the numerical solu-
tion, bounded by the set of arcs cl, c2’, and c¢3, is in this case differ-
ent from Q. Obviously then, the boundary conditions (8.4) and the com-
patibility condition (8.5) must be replaced by similar discretized condi-
tions in which c2’ and Q' take the place of c¢2 and § respectively.

For those triangular cells bordered by c2', the discretization

of the coefficient function a is carried out as suggested by Concus [6].
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| The domain Q' seems to approximate well (|2]= .15708 and
IQ'I= .15702). Notice that the grid constructed is quite nonuniform; in
fact the ratio of maximum mesh spacing to minimum mesh spacing is about
1000 to 5. This strong nonuniformity, plus the fact that a’([Vvlz) is
negative, could perhaps explain why in this case the frozen coefficients
approximate linearization seems to be more favorable than some other
types of linearizationms.

Three different values of the contact angle O are considered
in Example 8.1. These are 6 = 60°, 50°, and 45°, which essentially
correspond to increasing degrees of nonlinearity. For each of these
values of 0, the corresponding first row of Table 8.1 indicates the num-
ber of steps required by DADI to reduce both the residual and the rel-
ative error to less than 10—4. The corresponding value of the maximum
of the solution u which is attained at (a,0), and the value u(0,b) are
then given to the significant number of digits shown there, after normal-
izing by subtracting from the solution u the center value u(0,0).

The second row gives similar results corresponding to relative
error less than 10—8. The corresponding values of u(a,0) and u(0,b) at
theée two different levels of accuracy and for the significant number of
digits shown, seem to be in good agreement with each other.

One also notices that the solution converges slowly in a neigh-
borhood of the point (a,0), while at (0,b) it converges rather quickly.
This is of course as expected since at (0,b) the solution is almost flat,

whereas the steepest part of the solution is at (a,0).
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In conclusion we remark that even though the grid used was
strongly nonuniform, and even though the solution is uniquely determined
only up to an additive constant, DADI seems to work with great efficiency.

We mention that N. Albright [15] has applied a bilinear finite
element method on this elliptical domain and other irregularly shapéd

domains, applying line nonlinear SOR to solve the resulting equations.
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IX. THE MAGNETOSTATIC EQUATION

9.1 General description of the problem

OQur nonlinear elliptic operator L corresponds in this case to

discretizing the Dirichlet problem

div(a W) = s(x,y) in Q,

9.0)

v g(x,y) on of.

Here the bounded plane regioﬁ 2 is divided into two portions: Qa corre~
sponding to the air medium, and Qi = $2-Qa corresponding to the iron
magnetic core. We will discuss first the case of a mildly nonsmooth con-

ductivity function a and then proceed to attack the highly nonsmooth case.

9.2 Mildly nonsmooth coefficients

In this case a is given by

1 in Qa
a:
1074 + lwl2 )
5 in Qi.
1+ |wv|

Our test example treats the case in which neither Qa nor Qi is null.
The "smooth case" (in which Qa is nqll) was also treated extremely suc-—
cessfully. Some computational results on this smooth case are presented
in the self-explanatory Example 9.1.

The region § is the unit square (0,1) X (0,1). On Q, a uniform
cartesian grid is placed with mesh spacing h = 1/40. The region Qi as

shown in Figure 9.1 consists of the following set of points:
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Q = [{.25<x<.4}X{0 <y<.225}10[{.75<x < .925}x{0<y< .925}].
In terms of the indicial or logical coordinates

0, =[M11<i<17}X{1<j<15HU[{31<i<38} X{1<5< 38}.

The source function s in equation (9.0) is chosen as a step

function whose support is the set QS (corresponding to the current carry-

ing copper coil of the magnet) given by

Y]
s

{45<x<.7}X{0 <y< .35}, 1in global coordinates,

2 {19<1<29}X {1 <j< 15}, in logical coordinates.

The boundary conditions are given by

g—\‘:=0 on {0<x<1}X{y=0},
v=20 on the remainder of 3f).

Notice that the Neumann boundary condition along the x-axis is merely a
symmetry condition.
It is evident that the "smaller" s is, the smaller is the range

of IVVIZ, and hence the larger is the range of a([VvIz). Therefore, a

smaller s should produce a slightly slower rate of convergence. However,

it is not quite obvious if this is because the problem becomes badly dis-
continuous, or highly nonlinear, or perhaps both. A reasonable choice of

s is taken as

8 R
- — X 7 in Qs’

0 elsewhere.
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Some self-explanatory computational results are given in
Example 9.2. There these results are also compared against point SOR as
implemented in the TRIM code, which was referred to in Section V. In
that code, the coefficient function a is replaced by a piecewise linear
function interpolating a table of values a([Vuli), 1 <k<n, for some.n
and for some sequence of values quli. Recall that in that code the dif-
ference equations correspond to 7-point patterns. These two main devi-
ations from our DADI code should explain the disagreement in the fourth
or fifth decimal digits for the numerical values obtained by our DADI and
by TRIM in Example 9.2;

Our DADI code was designed such that during the process of com-
puting the residual (Lun—f), or solving the implicit equations, no advan-
tage was taken of the fact that a = 1 in Qa. The TRIM code, however,
gains quite a bit in programming efficiency by distinguishing between
those points in Qa and those points in its complement»Qi. It was noticed
that a point in Qi requires over thfee times more work than a point in
Qa. In the present case such an economization gives quite a programming
advantage to the TRIM code since there are 1186 nodal points in Qa and
only 374 in Qi. |

Returning to Example 9.2, we see that the number of DADI steps
neededrto reduce the relative error to less than 10_6 is about 18 or 19.
The point SOR.method, on the other hand, requires 328 '"cycles" to achieve
the same accuracy. Based on execution time comparison, DADI in this‘ex—

ample seems to be about eleven times faster than point SOR.
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9.3 Highly nonsmooth coefficients

As in the previous case, the region Q is divided into two
portions, Qa corresponding to air and Qi corresponding to the iron core.
The conductivity functibn a is identically equal to 1 in Qa. However, in
Qi’ a is given as a piecewise linear spline function of qu|2 interpola-
ting a table of measured values (see Table 9.1).

In the computational examples presented here, the region Q is
taken as a square of 40 units side length. The grid placed on Q is uni-
form with mesh spacing h = 1. The regions Qa and QS; shown in Figure 9.2,
are taken as follows:

Q

a
Y/

]

[{15<x<30}X{0 <y < 20 JU[{30 <x < 40}X {0 < y< 1,

{15<x<30¥X{12<y < 20}.

The boundary conditions are essentially the same as in the pre-

vious case, that is

-g—;—=0 on {0 <x<40}X{y=0},
v=0 on the remainder of 9 .

Unlike the mildly nonsmooth case of 9.2, where for "large" s

the function a is usually close to 1 because IVv[ becomes large, and thus
the problem is nearly linear and fairly smooth, in the present case the
problem seems to become more numerically ill-conditioned because ﬁore
interpolatory nodes of the strongly nonsmooth permeability coeffiqient a
enter into the computations. (A quick glance at the "permeability: Table

9.1 should be convincing.)
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We now fix the value of the source term s and allow the geo-
metrical quantity Yo which appears in the definition of Qé (yO measures
the width of the cyclotron magnet vacuum channel) to vary vertically.
The computational resglts presented in Example 9.3 are for Yo = 20, 12,
and 8. We see there that p = max (IVulz) is monotone decreasing as a
function of Yo* Thus, as in our remark concerning a large s, a smaller
Yo should produce a more numerically ill-conditioned problem.

The step function s is given by

4y 50000
- =X = ~ i
100 120 523.5987756 in Qs s

0 elsewhere.

Physically, the figures 50000 and 120 represent the measured current in
amperes (50000) and the area of the region on which s has its support
(IQS] = 120).

The DADI performance will be once again compared Qith that of
point SOR as implemented on the TRIM code. 1In both methods, and for all
three cases (y0 = 20, 12, and 8), the initial approximation is u0 = 0.
The approximate linearization employed in DADI is Option III (approximate
linearization of the differential equation). This Option seems to be
somewhat more efficient than the frozen coefficients approiimate linear-

ization.
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" Our computational results are summarized in Example 9.3. 1In
these computations, we require the relative error to be less than iO-G
as a criterion for convergence. Our FORTRAN codes were compiled on the
efficient compiler FTN4 with the maximum dptimizing code OPT=2. The
TRIM code on the other hand is compiled on the less efficient compiler
RUN76, however, it is currently being modified so that it can be com~

piled on the FIN4 compiler. (We have used the factor 2.325 to convert

from FIN4 CPU seconds to RUN76 CPU seconds.)

Case I

Yo = 20. The problem seems to have converged quite well in
about 24 DADI steps. The corresponding execution time is 1.412 seconds
on FTN4 or 3.284 seconds on RUN76. Comparing with point SOR of the
TRIM code, where the corresponding number of cycles and CPU time are 561
cycles and 69 seconds, we see that in this case DADI is much more effi-

cient than point SOR (by a factor of about 21).

Case II

Yo = 12. The number of DADI steps needed in this case is about

67 steps, requiring 4.05 seconds on FIN4 or 9.417 seconds on RUN76.

Comparing this case with the previous one, y0==20, we see that the number

of steps needed here is about 5/2 times greater.

Point SOR, contrary to DADI, has reduced the number of cycles
required, meeting the convergence requirements now with only 502 cycles
(instead of 561) and 63 seconds CPU time (instead of 69). This seems

rather unexpected. Nevertheless, DADI's superior efficiency is still




9.7 |

quite clear in this example (by a factor of 6.7).

Case III

Yo = 8. The results in this caSe, still favorable to our DADI,
are less favorable than in the previous two cases. In terms of CPU time,
DADI is only about 1.8 times more efficient than point SOR. DADI re-
quired about 7 times more steps than those required in Case I. 1In con-
trast, point SOR required about 120‘cyc1es less than the 561 required in
Case I, which once more seems rather unexpected.

The huge number of steps required by DADI in Case III (relative
to that required in Case I) seems to be because the maximum value
of IVul2 for the solution in Case I is only about 1.5 X 108, whereas in
Case III it is about 3.75><108. Hence, as one sees from Table 9.1, the
piecewise linear spline function Y(IVulz) in Case I ranges only over the
first 2 or 3 nodes of the tabulated spline, whereas in Case III it ranges
over 13 or 14 nodes. Thus, in Case III we are dealing with a much more
nonsmooth function a(qulz), and hence it is natural that a linearization
or Newton type approach to these nonsmooth cases will not yield very
rapid convergence.

We can conjecture that replacing the linear spline ¥y by much
more smooth rational function (also fit to the data of Table 9.1 within
experimental error) would lead to much faster convergence. Never in all
our experience with DADI was such a huge amount of computations required

for a smooth coefficient a.
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X. HIGHER DIRECTIONAL DYNAMIC ADI '

10.1 A three directional test example

The three directional linear elliptic problem being tested here
results from the discretization of the Dirichlet problem for the two di-
mensional Laplace equation using a 7—§oint hexagonal pattern which yields
the form

Ilu= A+B+C)u=fF in Q.
Or, letting u7 denote the value of u at the center of a hexagon and let-
ting ul, u2, u3, u4, u5, and ub denote the values of u at the vertices of
that hexagon, ordered in a counter clockwise sense (see Figure 10.1), then
at the centér point we have the equation
(u3 - 2 u7 +ub) + (ub - 2 u7 + ul) + (U5 = 2 u7 + u2) = £f7.
(The notation used here is similar to that of Section IITI.)

The region 2 considered is a uniform hexagon whose sides are of
length 1. A uniform hexagonal grid is placed on ! with mesh spacing of
1/10 between adjacent points; this gives 271 as the total number of in-
terior nodal points.

Since L is linear, it is sufficient to consider the case f
equal to zero everywhere in  and zero Dirichlet data on the boundary
nodes. The initial approximation uo, which coincides with the initial
error eo, is then taken as uniformly distributed random numbers in the
interval (0,1).

Since the true solution is u = 0, the previously defined
"relative error" (I]un-un-1||/||un||) obviously gives no information

+ n
concerning the convergence. We instead consider the true error llu [|

.

and the residual HLun
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The results of this test case are given in Example 10.1. In
this example we see that both the residual aﬁd the error have been re-
duced by a factor of less than 6><10_8 in only 15 steps. Notice also
that the errors are steadily decreasing, as expected. The residuals, on
the other hand, have the rather expected slightly oscillatory behavior,

which occurs particularly for larger values of At.

Sope preliminary computational fests have been ﬁade on the non-
linear minimal surface equation using the 7-point scheme on a uniform
hexagonal mesh, and employing the 3-directional DADI method. These tests
have been very successful and will be reported in a later paper [2]. Our
3-directional DADI methods have been also tested on a few 3-dimensional

linear elliptic problems with variable coefficients. The results were

quite successful.

10.2 A four directional test example

The analysis of Section IV, which was limited to three oper-
ators A, B, and C, can be extended in a similar way to any finite numbers
of operators. The primary task, of courée, is to investigate the possi-
bility of obtaining a good strategy for the change in At.

We have decided mefely to use the 3-directional strategy on a
4-directional problem, without bothering to plot the usual graphs of con-
vergence factor versus test parameter. The results of one test example

were quite encouraging.

Here we solve the Dirichlet problem

u +u =0 in Q,

u = g(x,y) = x4 - 6 x2 y2 + y4 on 3%,
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where {0 is the unit square (0,1) X (0,1). Now, however, instead of the

usual 5-point scheme, we use the 9-point discretization of this problem,

which yields this form
LE(A+B+C+.D)u=f.
Or, at the center point P9 we have

(b ub - 8u9+ 4 u8) + (4 ub - 8 u9 + 4 u2)

+( u7 - 24w+ u3d) +( u5s-2u9+ ul)=£9.

The notation used above is that of Section III (see Figure 3.1). The
accuracy of this 9-point discretization scheme is O(hé), see for example
Dahlquist and Bjorck [11] p. 320. Thus, since the boundary function g
is chosen to be a fourth order polynomial, and the method is fourth order
correct, it follows that the discrete solution agrees exactly with the
solution of the continuous problem; this continuous solution is simply
x4 - 6 x2 y2 + y4 itself.

The mesh spacing of the uniform cartesian grid used in this

test is 1/40. The initial approximation is u0 = 0. This gives the value

28;997 as the initial error.

The computational results of this test case are given in

Example 10.2. The error has been reduced in this example by a factor of

8

less than 4X10 = in 19 steps.
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XI. COMPUTATIONAL EXAMPLES FOR SOME PROBLEMS
WITH NONLINEAR u DEPENDENT COEFFICIENTS

This section is devoted primarily to a brief discussion of the

use of some different strategies, different time policies, different op-

tions on the approximate linearization, and different initial choices of

At.

All are tested on some of the rather extreme cases of the u dependent

coefficients of the previous paper [1] (as opposed to the IVuI dependent

coefficients of the present paper). Such different combinations can pos-

sibly lead to a noticeable effect on the course of convergence. of the

DADI method. The different strategies considered in these tests are:

(1)

(2)

(3)

The "strong strategy". Recall that this strategy calls for parti-
tioning the range of the test parameter TP into the seven disjoint
intervals (0,.05], (.05,.11, (.1,.3], (.3,.5], (.5,.66], (.66,.75],
and (.75,2). The corresponding factors by which At changes are 8,
4, 2, 1/5, 1/7, 1/11, and 1/17 respectively. Finally, the step is

rejected for TP > .66.

The "strategy I" of [1]. Recall also from Section II that this
strategy partitions the range of TP into (0,.05], (.05,.11, (.1,.3],
(.3,.4], (.4,.6], and (.6,). The corresponding factors by which
At changes are 4, 2, 1, 1/2, 1/4, and 1/16 resﬁectively; the step

is rejected for TP > .6.

The "strategy II", a slight modification of the strategy I above.

Here one merely replaces the factor 1 by the factor 2.
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The nonlinear elliptic problem Lu = f being considered here,
essentially, corresponds to discretizing the Dirichlet boundary value
problem

div(a VW) = 0 in Q,

(11.1) -
v = g(x,y) on 3%,

where the conductivity @ is a function of v and the coordinates x,y).

The discretization of (11.1) is fully described in [1]. There
one essentially approximates the function a(v,x,y) along "mesh links"
rather than over cells. This discretization leads to a 5-point pattern
nonlinear elliptic finite difference equations Lu = f; and not a 9-point
pattern. The Fréchet derivative L’ will in turn correspond to a 5-point
pattern. Of course, the decomposition L' = A + B in general need not be
such that A and B are negative definite. It is equally true that A and
B will not be symmetric in general.

Beside using the true Fréchet derivative, we have also used the
frozen coefficients approximate linearization [1]. This will usually
give rise to a decomposition L* = A* + B* with negative definite symmetric
A* and B*.

The right hand side f in the equation Lu = f was actually com-

puted via the defining formula f = Lu for some preassigned function u.

In this way, one is able to know the exact solution u and hence to compute

the "true" error || u - u” || at each step n.
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The region ! is the 270° pie~shaped sector

2 ={Gy)x @D G-D2<t~{(x,y): 0<|y-1 <x-1}.

We place on a uniform rectangular grid with mesh spacing h = 1/20 and
with the center of the unit circle being a nodal point of this grid. We
then replace { by Q', whose boundary Q' is a closed polygon which is
made entirely of horizontal and vertical segments through those nodal
points which are nearest to 90 and belonging to the closure of Q. We
have purposely chosen here a grid region Q' with a rather jagged bound-
ary.

In this way, all the nodal points of the computer generated
mesh lie on 39 mesh lines. Let (i,j) be the indicial coordinates of the
left-most nodal point of the jth mesh line, then as j runs from 1 to 39,
i takes the respective values: 14, 12, 10, 8, 7, 6, 5, 4, 4, 3, 3, 2, 2,
1(repeated 13 times), 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 12, and 14. Sim-
ilarly, for the right-most nodal point of the jth mesh line, as j rums
from 1 to 39, i takes the values: 26, 28, 30, 32, 33, 33, 33, 32(-1)20,
21(1)32, 33, 33, 33, 32, 30, 28, and 26; the notatiom r(s)t stands for
the sequence r, r+s, r+2s, ... t.

Along the jth mesh line, j = 2, ... 38, the set of nodal points
at which the solution is to be found lies exclusively between the points
(Z,j) and (r,j), where as j runs from 2 to 38, I takes the resepctive
values: 12, 10, 8, 7, 6, 5, 5, 4, 4, 3, 3, 2(repeated 13 times), 3, 3, 4,
4, 5, 5, 6, 7, 8, 10, and 12, whereas r runs over the respective values:
26(2)30, 32, 32, 32, 31(-1)19, 20(1)31, 32, 32, 32, 30, 28, and 26. All

other nodal points are boundary points and Dirichlet data are prescribed
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there.

Notice that each vertical mesh line to the right of the center
nodal point is actually formed of two disjoint portions. This requires
extra programming care in carrying out each vertical sweep.

Two specific problems will be examined next:

Problem (s) which corresponds to a highly smooth exact solution

2 2
u(x,y) = x + vy,

and to a coefficient function

a(u,x,y) = .05 + E:'-.-Z-X-+ 10 2— .
1+y l+u2

This highly nonlinear case has max d/min a~14.48 over §). The initial
approximation u0 is taken equal to zero everywhere in '. The ZZ norm

of the initial error is then 65.03.

Problem (b) this corresponds to a highly oscillatory exact solution
2,2
u(x,y) = 1 = cos [6(x"+y")],

and to a éoefficient function which changes quite abruptly as u gets

close to 1,

x+2y + 1
By 1h6@-n*

a(u,x,y) = .05 +

This case is also quite highly nonlinear even though max a/min a is only
~ 2,93 in . The initial approximation uO, as in Problem (a), is also
equal to zero. The 22 norm of the initial error in this case is equal

to 36.84.
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Some of our computational tests with these two problems are
presented in Example 11.1. Each problem was tried with different strat-
egies, time policies, and initial values of At. Each case was further
tried with both the true or exact linearization and the frozen coeffi-

o
cients approximate linearization. In all cases the convergence criterion

was that the total reduction factor of initial error be less than 5X 10—6.

Notice that the initial choice of At equal to .0001831 in Prob-
lem (a), happened to be the first of eight iteration parameters which
were chosen in the trial runs with the "standard" ADI method [1] for this
problem. Incidentally, though those eight parameters presumably were
judiciously chosen, the ADI method (with the true linearization option)
did not converge when ﬁ % 0. However, when a better initial approximation
was chosen (u0 = exact solution + random numbers in (-.1,.2), the ADI method
did converge. Also; the standard ADI method when combined with the
froéen coefficients approximate linearization did converge, even for zero
initial values which were quite greatly in error.

Notice, however, from Example 11.1, that DADI converged in all
cases tried. The convergence was somewhat better when DADI was combined
with the frozen coefficients approximate linearization. Notice also that
the strong strategy and strategy II combined with this approximate linear-
ization, still working in the domain of Problem (a), seem to be about a

factor of 2 more efficient than strategy I, this is, however, not usually

the case.
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The situation in Problem (b) is different from Problem (a) in
that the exact linearization seems to work better or at least the same as

the approximate linearization. This is perhaps because the coefficient
function a in Problem (b) depends on u in such an abruptly nonlinear

manner.

Using strategy I, the time policy At, At, 2 At, and‘the frozen
coefficients approximate 1ineérization, one sees in Example 11.1 Problem
(b) that 62 steps were required to reduce the error by a factor of less
than 5><10-6. As indicated in that example the test parameter TP was
trapped between the two values .118 and .125 for all of steps 7 thréugh
62 and thus, according to strategy I, At was never allowed to change.
Tﬁe convergence factor meanwhile remained stagnant near the value ,.817
throughout all these steps, which is not as good as one might have hoped.

Using the true linearization instead, once again with strategy
I and time policy At, At, 2 At, we see that the convergence requirement
was met in only 19 steps; i.e., in less than 1/3 the number of steps re-

quired by the frozen coefficients approximate linearization.
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MINIMAL SURFACE, NUMERICAL EXAMPLES

Example 6.1
1- Region:  is the unit square (0, 1) X (0, 1).

Initial approximation:

92—
w(x,9) = K sin(m(1-y)/2) sinh(T(1-x)/2) /sinh(n/2),
(x,y) € 2, K = .5, 1.0, 5.

-
<
it
t
<
[
Fh

3- Scaling type

S~
1

Approximate linearization: Option III.

5~ Time policy: At, 3 At, 4 At.

o
I

Strategy: the '"'strong strategy", i.e., At changes by factors of
8, 4, 2, 1/5, 1/7, 1/11, and 1/17 accordingly as the test
parameter TP is in the intervals (0,.05), [.05,.1), [.1,.3),
[.3,.5), [;5,.66), [.66,.75), and [ .75,2). The step is rejected

only if TP = .66.
7- Computer and compiler: 7600, RUN76.
8- Mesh spacing: h = 1/10.

For this mesh spacing the values.of u are shown at the grid
points with logical coordinates (2,2) and (10,10). These are the inte-~
rior grid points where u is largest and smallest since they are the in-

terior grid points closest to the corners.




Example 6.1 (continued)

E2

K =
Change in Relative i
Step # At TP At - error Residual | u ]|
1 .1 .0861 acc. 4 5.305E-2  3.190E-3  1.602725
2 4 4944 acc. 1/5 1.117E-3  2.192E-4 1.602513
3 .08 . 4662 acec. 1/5 6.837E-5  4.194E-5 1.602549
4 .016 .7321 rej. 1/11 9.726E-6 6.174E-6 1.602555%%*
5 .0014 .0630 acc. 4 7.230E-6  1.135E-5 1.602553
6 .0058 .1884 acc. 2 4.002E-6 1.573E-6 1.602556
7 .0116 .1686 acc. 2 4,854E-7 1.002E-7 same
8 .0233 .0459 acc. 8 1.727E-7 1.924E-8 same
9 .1862 .1498 acc. 2 3.223E-8 1.767E-9  1.602555
10 .3724 .5677 ace. 1/7 2.022E-10 1.377E-10 same
u(2,2) = ,4043433, u(10,10) = .004872114
CPU time consumed = .114 sec.
K=1.0
1 .0653 acc. 4 2.146E~-1 1.015E-2 2.793245
2 .3282 ace. 1/5 7.834E-3 1.373E-3  2.814218
3 .08 .3692 ace. 1/5 5.867E-4  1,143E-4  2,813733
4 .016 .2249 acc. 2.826E-5 1.150E-5 2.813774
5 .032 .0630 acc. 9.200E-6 1.700E-6 2.813798
6 .128 1474 acc. 2 2.862E-6 2.561E-7 2.813806
7 .256 .2183 ace. 2 1.030E-7 6.057E-8 2.813805
8 .512 .5695 ace. 1/7 4.916E-9  3.754E-8  same
u(2,2) = .7404817,  u(10,10) = .007825731

CPU time consumed = .097 sec.
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E3

K= 5.0
Change in Relative
Step # At TP At error Residual Jull
1 .1 .1107 acc. 2 4.686E~1 8,739E~2 11.83714
2 .2 .0641 acc. 4 5.801E-1  4.160E-2 7.655516
3 .8 .0945 acc. 5.068E-1 3.066E-2 5.199171
.4 3.2 .6202 acc. 1/7 4,221E-2 3.003E-2 5.032099
5 L4571 .5667 acc. 1/7 3.177E-2 1.735E-2 5.144182
6 .0653 .4280 acec. 1/5 5.995E-3  8.405E-3 5.139477
7 .0131 .3513 acc. 1/5 6.869E-4 9.925E-4 5.137969
8 .0026 .0418 acc. 7.433E-5 1.730E-4 5.137665
9 .0210  .0248  acc. 4.716E~4  1.471E-4  5.135459
10 .1672 .0681 acc. 1.872E-3 9.891E-5 5.126507
11 .6687  .1737 acc. 9.133E~4  6.026E-=5 5.122148
12 1.3375 .6112 acc. 1/7 7.681E-5 4.144E-5 5.121897
13 .1911 .5366 acc. 1/7 4,125E-5 1.218E-5 5.121925
14 .0273 .2712 acc. 2 5.691E-6 2.960E-6 5.121920
15 .0546 .1291 acc. 2.362E-6 5.644E-7 5.121912
16 .1092 .0622 acc. 4 2.384E-6 2.471E-7 5.121901
17 .4367 .1208 acc. 1.927E-6 1.513E-7 5.121892
18 .8734 .4589 acc. 1/5 2.398E-7 1.329E-7 5.121891
19 L1747 L5132 ace. 1/7 5.524E-8  1.091E-7 same
20 .0249  .3162 ace., 1/5 8.809E-9 5.776E-8 same
u(2,2) = 1.435122, u(10,10) = .01168282
CPU time consumed = .229 sec.
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MINIMAL SURFACE, NUMERICAL EXAMPLES

Example 6.2

Same as in Example 6.1, except that now

8~ Mesh spacing: h = 1/20.
K=.5
_ Change in Relative :
Step # At TP At error Residual ull
1 .1 .0846 acc. 4 5.146E~2 '1.939E-3  3.311384
2 A .4926 acc. 1/5 1.114E~-3  1.904E-4  3.310700
3 .08 4931 ace. 1/5 6.936E-5  3.504E-5  3.310787
4 .016 .9635 rej. 1/17 9.986E-6 9.469E-6 3.310802%%
5 .0009 .0933 acc. 4 7.462E-6 9.721E-6 3.310797
6 .0038 .1599 acc. 2 4.976E-6 1.677E-6  3.310804
7 .0075 .1500 acc. 2 7.983E~-7 1.507E-7  3.310805
8 .0150 .0782 acc. 4 2.905E~7  4.857E-8  3.310804
9 . 0602 .0970 ace. 4 1.310E-7 2.607E~8 same
10 . 2409 .2285 acc. 2 4.191E-9 6.508E~-9 same
u(2,2) = .4506158, u(20,20) = .001214682.
CPU time consumed = .424 sec.
1 .1 .0635 acc. 4 2.064E-1 5.377E-3  5.819798
2 <4 .3381 ace. 1/5 7.918E-3  9.836E-4 5.863080
3 .08 .3766 ace. 1/5 5.888E-4  1.045E-4  5.862145
4 .016 4109 ace. 1/5  3.446E-5 1.712E-5 5.862226
5 .0032 .4003 ace. 1/5 3.695E-6  3.322E-6 5.862233
6 .00064  .1082 acc. 3.370E-7 1.057E-6 5.862235
7 .0013 .0141 acc. 5.006E-7 7.128E-7 5.862237
8 . 0102 .0093 acc. 3.017E~6 5.809E-7 5.862251
9 .0819  .0992 acc, 5.399E-6 1.604E-7 5.862279
10 .3277 .3684 aac. 1/5 1.682E-7 3.470E-8 5.862278
11 .0655 .3679 acce. 1/5 1.735E-8 3.895E-9 same
12 .0131 L4734 ace. 1/5 1.198E-9 7.297E-10 same

u(2,2) = .8519609,

CPU time consumed =

u(20,20) = .001943023
.537 sec.
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Example 6.2 (continued)

K= 5.0
Change in Relative
Step # At TP At error Regidual [ ull
1 .000L  ,00058 acc. 8 5.077B-4  5.422E-2  34.61134
2 .0008  .0035 acc. 8 4.000E-3  5.350E-2 34.49971
3 .0064  ,0133 acc. 8 3.029E-2  5.023E-2  33.64610
4 .0512 ,0370 acc. 8 2.217E-1  4.114E-2  28.20990
5 L4096  ,2215 acc. 2 1.040E+0  2.581E-2  14.33002
6 .8192 1688 acc. 2 3.060E-1  2.511E-2 11.31683
7 1.6384 .3246 acc. 1/5 5.113E-2 2.148E~-2  10.86005
8 .3277  .6329 acc. 1/7  1.899E-2  1.393E-2 10.92086
9 .0468  .4878 acc. 1/5  7.086E-3  4.204E-3 10.91118
10 .0094 2319 acc. 2 9.473E-4  1.108E-3  10.90746
11 .0187  ,0927 acc. & 8.168E-4  2.986E-4  10.90092
12 .0790  .0701 acc. 4 1.661E-3  1.133E-4  10.88349
13 .2996 .0942 acc. 4 2.170E-3 7.950E-5 10.86106
14 1.1984  .2290 acc. 2 9.121E-4  1.160E-4  10.85237
15 2.3967  .6084 acc. 1/7  9.367E-5  9.595E-5 10.85174
16 .3424  .5855 acc. 1/7  1.034E-4  4.586E-5 10.85220
17 .0489 .5169 acc. 1/7 3.061E-5 2.110E-5 same
18 .0070  ,2340 acc. 2 4.923E-6  5.351E-6  1.085219
19 .0140  ,1236 acc. 2 3.493E-6  1.850E-6 10.85217
20 .0279  ,0951 acc. & 3.899E-6  1.185E-6  10.85215
21 .1118  .0974 acc. 4 8.020E-6  1.304E-6  10.85207
22 L4472 1119 ace. 2 9.784E-6  1.381E-6 10.85198
23 .8944  ,2775 acc. 2 2.370E-6  9.717E-7 10.85196
24 1.7888 .5181 ace. 1/7 3.106E-7 7.595E~7  same
25 .2555 .5685 acc. 1/7 2,711E-7 6.957E~7 same
26 .0365 .5726 acc. 1/7 8.987E-8 5.658E-7 same
27 .0052 1.1965 rej. 1/17 2.309E-8  1.510E-7 same**
28 . 0003 .0678 acc. 4 1.528E-8 2.135E~7 same
29 .0012 -.1690 acc. 2 1.116E-8 2.910E-8 same
30 .0024  .1139 acc. 2 6.212E-9  1.057E-8  same

u(2,2) = 1.778599, u(20,20) = .002837401

CPU time consumed = 1.288 sec.
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MINIMAL SURFACE, NUMERICAL EXAMPLES

Example 6.3

Same as in Example 6.1, except that now

8- Mesh spacing:

h = 1/40

(Only the cases K = .5 and K = 1.0 are considered.)

K= .5
Change in Relative
Step # At TP At error Residual Il ul|
1 .1 . 0842 acc. 4 5.040E-2 1.055E-3 6.725016
2 .4929 ace. 1/5 1.095E-3 1.223E-4 6.723539
-3 .08 . 4960 acc. 1/5 6.878E~5 2,151E-5 6.723721
4 .016 1.0261 rej. 1/17 9.728E-6 7.268E-6 6.723751%%
5 .00094 - ,1383 acc. 2 7.691E-6  5.284E-6 6.723744
6 .00188 .0811 acc. 4 3.673E-6 1.361E-6 6.723755
7 .0075 .1995 ace. 2 1.797E-6  4.140E-7 6.723758
8 .0150 .1758 ace., 2 3.628E-~7 2.751E-7 6.723757
9 .0301 .2312 acc 2 1.412E-7 1.961E-7 6.723756
u(2,2) = .4749105, u(40,40) = .0003034580
CPU time consumed = 1.514 sec.
K=1.0
1 .0634  acc. 4 2.009E-1 2.752E-3  11.88650
2 .3423 acc. 1/5 7.847E-3  6.440E-4  11.97245
3 .08 .3799 ace. 1/5 5.736E-4  1.225E-4  11.97069
4 .016 .6529 ace. 1/7 3.616E-5 3.854E-5 11.97084
5 .0023 .6303 ace. 1/7 7.390E-6  1.507E-5 11.97086
6 .00033 .2461 acc. 2 1.122F-6  3.842E-6 same
7 .00065 .1102 acc. 2 3.400E-7 5.186E-7 same
8 .0013 .0166 acc. 8 5.059E~7 3.765E-7 11.97087
9 .0104 .0194 acc. 8 2.681E-6 2.710E-7 11.97089
10 .0836 .0879 acc., 4 4.405E-6 6.727E-8 11.97093
11 .3344 .3580  acc. 1/5 1.449E-7 2.016E-8 same
12 . 0669 .3691 acc. 1/5 1.477E-8 3.995E-9  same
13 .0134 6124 ace. 1/7 1.701E-9 1.525E-9 = game
u(2,2) = .9195410, u(40,40) = .0004848931

CPU time consumeed = 2.264 sec.




E7

MINIMAL SURFACE, NUMERICAL EXAMPLES

Example 6.4

Same as Example 6.1 except that now

0

2~ Initial approximation: u =0 in §; K = 5.0.

7- Computer and compiler: 7600, FTN4, OPT=2.
8- Mesh spacing: h = 1/10, 1/20, and 1/40.

h = 1/10
Change in Relative
Step # At TP At error residual
1 .1 .2071 acc. 2 1.0 7.026E-2
2 2 .1118 acc. 2 2.338E-1 1.353E-2
3 4 .1493 acc. 2 5.781lE-2 5.594E-3
4 .8 .2728 acc. 2 9.508E~3 3.384E-3
5 1.6 .5253 acc. 1/7 1.178E-3 2.653E-3
6 .2286 .6366 acc. 1/7 1.324E-3 1.286E-3
7 .0326 .3657: acc. 1/5 4, 747E-4 2.531E-4
8 .0065 .1346 acc. 3.733E-5 5.136E-5
9 .0131 .0277 acc. 4.593E-5 2.391E-5
10 . 1045 .0703 acc. 2.068E-4 1.580E-5
11 . 4180 .1160 acc. 2 1.793E-4 7 .920E-6
12 .8359 L4177 acc. 1/5 2.344E-5 5.524E-6
13 .1672 .5084 acc. 1/7 4,972E~-6 1.486E-6
14 .0239 .2287 acc. 6.961E~7 3.696E-7
15 .0478 .0770 acc. 4.347E-7 8.222E-8
16 .1911 .0753 acc. 7.115E-7 3.671E-8
17 .7643 .1952 acc. 2.838E-7 2.429E-8
18 1.529 .6381 acc. 1/7 2.228E-8 1.651E-8
19 .2184 .5541 acc. 1/7 1.582E-8 6.295E-9
20 .0312  .3248  acc. 1/5 2.549E-9  1.535E-9




Example 6.4 (continued)

A sample of the behavior of lull, max(u), min(u); (Recall

E8

that the maximum and the minimum are always taken over all inner nodal

points as well as that portion (possibly empty) of the set of boundary

nodal points at which no Direchlet data are prescribed.)

Step #
1

5
10
15
17

20

llu ]l max (u) min (u)
3.673547 .9904361 .009809337
5.117806  1.444997 .01148698
5.120924  1.445938 .01168200
5.121886  1.446362 .01168282
5.121891  1.446365 .01168282
same same same

CPU time consumed = .098 sec.
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Example 6.4 (continued)

h =1/20
Change in Relative
Step # At TP At error Residual
1 .1 .2413 acc. 2 1. ~ 5.085E-2
2 .2 .1389 acc. 2  2.607E~1  1.083E-2
3 .4 .1683  acc. 2 7.960E-2  7.168E-3
4 .8 .2268 acc. 2 2.145E-2 6.243E-3
5 1.6 L4195 acc. 1/5 3.720E-3  5.599E-3
6 .32 .6620 rej. 1/11 2.892E-3  3.400E-3*%
7 .0291 .3388 acc. 1/5 4.116E~-3  2.344E-3
8 .0058 .2801 acc. 2 4.620E-4 4 .087E-4
9 .0116 .0952 acc. 4 4.200E-4  1.926E-4
10 . 0465 .0969 acc. 4 6.337E~4  7.718E-5
11 .1862 .1197 acc. 2 7.902E-4  3.694E-5
12 .3724 .1181 acc. 2 5.006E~4  2.845E-5
13 L7447 .2169 acc. 2 1.5655-4  2.693E-5
14 1.489 L4354 ace. 1/5 2.373E-5  2.552E-5
15 .2979 .6233 ace. 1/7 1.624E-5 1.727E-5
16 .0426 .5209 ace. 1/7 9.256E-6 6.157E-6
17 .0061 .2218.  acc. 2 1.753E-6 1.881E-6
18 .0122 .1401 ace. 2 1.050E~6  5.154E-7
19 .0243 .0846 acc. &4 1.069E-6  2.106E-7
20 .0973 .0943 acc. &4 1.805E-6  1.048E-7
21 .3891 .1028 acc. 2 2.367E~6  8.527E-8
22 .7782 .2514 acc. 2 6.544E~7 6.780E-8
23 1.556 4676 acc. 1/5 8.864E-8  6.902E-8
24 .3113 .5945 ace. 1/7 5.780E-8  4.583E-8
25 .0445 .5089 ace. 1/7 2.653E-8 1 .758E 8
26 .0064 .2273 acc. 2 5.089E-9  5.401E-9




Example 6.4 (continued)

A sample of the corresponding behavior of norm, max and min

of the iterative solution:

E10

Step # el max (u) min (u)
1 7.262963 1.091580 .0023721
15 10.85192 1.781569 .0028374

22 10.85196 1.781588 same

26 same same same

CPU time consumed = .492 sec.
h = 1/40
Change in Relative

Step # At TP At error Residual
1 .1 .2589 acc. 2 1. 4,205E-2
5 1.6 .3501 acc. 1/5 8.619E-3 9.753E-3
9 .0012 .1880 acc. 2 1.991E-4 3.513E-4
13 L0745 .1493 acc. 8.084E-4 5.387E-5
17 1.192 .2287 acc., 2 1.426E~4 3.903E~5
21 .0097 L4146 acc. 1/5 1.168E-5 8.791E-6
25 .0156  .1614 acc., 2 2.042E~6 4,391E-7
30 . 9960 .1511 acc. 2 1.889E-6 1.408E-7
31 1.992 .3934 ace. 1/5 3.411E-7 1.275E-7
32 .3984  ,5872 ace. 1/7 1.771E-7 1.060E-7
33 .0569  .5986  acc. 1/7  6.051E-8  7.333E-8
34 .0081  .4168 ace. 1/5 3.353E-8 3.092E-8
35 .0016 .1705 ace. 2 7.731E-9 1.374E-8




Ell

Example 6.4 (continued)

A sample of the corresponding behavior of

the iterative solution:

norm, max, min of

Step # | ull max (u) min(u)
1 14.31536 1.154040 .000588203
9 22.55740 2.095969 .000706988
17 22.60705 2.103603 .000703126
21 22.60705 2.103701 .000703142
25 - 22.60705 2.103702 .000703146
30 22.60716 2.103729 .000703143
31 same 2.103731 same
35 same same same

CPU time consumed = 2.518 sec.
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A partial summary of the results in Examples 6.1-6.4 is given in
Table 6.1 below. For K = 5 and h = 1/10, 1/20, 1/40, only the results
for zero initial approximations are shown. The number of DADI steps
shown in each case corresponds to relative error less than 5><10--7 and
to residual less than 10-7. For relative error less tham 5X 10—7, the
corresponding results obtained by utilizing the block nonlinear SOR
method (BSOR-NEWTON or BSORN) of Concus [6] are also included in Table

6.1. As a loose rule one DADI step should take about the same CPU time

as 1.5 BSORN iteratioms.

Table 6.1
K .5 1.0 5.0
# of DADI steps 7 7 17
h = 1/10
# of BSORN 17 21 28
iterations
# of DADI steps 8 10 23
h=1/20
# of BSORN 31 40 56
| iterations
# of DADI steps 8 11 31
h = 1/40
# of BSORN 58 77 101

iterations




E13

CAPTLLARY SURFACES, NUMERICAL EXAMPLES

Example 7.1

1- Region: @ 1is the unit square (0,1) X (0,1).

2- 1Initial approximation: uO = 0.

3- Scaling type I: 1i.e., the parabolic eﬁuatidn used here is
v, = Lv - £ and not d v, = Lv - f which is referred to as scaling
type II.

4- Approximate linearizations: all three Optiomns I, II, III.

5- Time policy: At, 3 At, 4 At.

6- Strategy the "strong strategy".

7- Computer and compiler: 7600, FIN4, OPT=2.

8- Mesh spacing: h = 1/40.

The initial value of At in all runs in this example was the

same and was equal to 1.0.




CAPILLARY SURFACE, NUMERICAL EXAMPLES

El4

Table 7.1
h = 1/40
6 =75° 6 =60° B = 45° 6 =0°
max (u) .686279 1.37399 2.19766 34.01078
min(u) .439518 .84354 1.17881 1.55267
surface .246761 . 53045 1.01885 32.45811
height
[Vu] (0,0) .3858 . 9628 3.3743 676.33
Table 7.2
Option I Option II Option III
# of steps 10 10 10
6 = 75°{' Rel. error 2 X 107/ 2 X 1077 1077
CPU time .688 . 806 .790
# of steps 17 11 12
B = 60°{ Rel. error 1070 3% 1077 8 X 10~/
CPU time 1.169 .887 .948
# of steps 44 34 27
0 = 45°{‘ Rel. error 3% 1078 10~/ 8 X 1078
. CPU time 3.868 2.740 2.133
¢ # of steps 87 64 42
6 = 0° {- Rel. error 8 x 1078 10~/ 2 X 1077
5.985 5.158 3.318

CPU time




Example 8.1

1-

Region:

Q= {(kx,y): (x/a‘)2
with =~ a=1,0, b= .2,

.o . . 0
Initial approximation: u

Scaling type I: Ve = Lv -
Approximate linearization:

Time policy: At, 3At, 4At.

E15

A ZERO GRAVITY CAPILLARY SURFACE PROBLEM ON AN ELLIPTICAL REGION

+ g2 <, x>0, y>03,

Option I.

Strategy: the '"weak strategy".

Computer and compiler: 7600, FTN4, OPT = 2.

Along the major semiaxis, the mesh coordinates measured from the

center of the ellipse are:

.9, .91, .., .98, .985, ..,

0, .05, .., .4, .425, .., .8, .82,

1.0.

Along the minor semiaxis the y

coordinate partition is obtained by the intersection of these

vertical lines with the ellipse.

Total number of mesh points

42

+ 42 X 41 /2 = 903.
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A ZERO GRAVITY CAPILLARY SURFACE PROBLEM ON AN ELLIPTICAL REGION

Table 8.1
Relative
Steps # u(a,0) u(0,b) error Residual
27 L4214 .05341 2X 1070 2X 107
6 = 60° -9 -8
52 4214 .05341 5X 10 2 X 10
.
_ 5o 35 .6337 .07225 3 X 10 4 X 10
0 94 .6341 .07225 1008 2x 1078
42 .7890 .08200 2X 107 4 X 107
0 = 45° | —9 -8
105 .7893 .08200 5 X 10 10

CPU time per step = .043 sec.
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MAGNETOSTATIC, NUMERICAL EXAMPLES

Example 9.1 (smooth case)

1- Region: § is the unit square (0,1) X (0,1).

The elliptic operator L corresponds to the discretization of

divia W) = 0, a = (107 %|w|%)/@+|w|D a0

b

v =10 on{x=ﬂX{0<y<1}Uﬂ)<x<l}X{y= 1}

s

v .05 sin(mw(l-y)/2) along x = 0,

ov/dy = 0 along the remainder of the boundary 93Q.

Initial approximation:

w’(x,y) = .05 sin(n(1-y)/2) sinh(m(1-x)/2)/sink(1/2).
Scaling type I: v, = Lv - f.
Approximate linearization: Option ITT.

Time policy: At, 3 At, 4 At.

Strategy: 'weak strategy", i.e., the paftition of the range of the
test parameter is (0,.05), [.05,.1), [.1,.3), [.3,.5),1.5,.66),
[.66,.75),and [.75, =) and the corresponding factors by which At
changes are 8, 4, 2, 1/5, 1/7, 1/11, and 1/17 respectively. The

step is never rejected.
Computer and compiler: 7600, FTN4, OPT=2.

Mesh spacing: h = 1/10 and h = 1/30.
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Example 9.1 (continued)

E18

h =1/10
Change in Relative
Step # At TP At error - Residual
1 .01 .001 acc. 8 1.684E~3 3.387E-5
2 .08 .0148 acc. 8 1.071E-2 2.877E-5
3 .64 -.0335 acc., 8 4.630E-2 1.752E-5
4 5.12 .0959 acc. 4 9.253E-2 5.976E-6
5 20.48. .3760 acc. 1/5 6.640E-3 1.596E-6
6 4.096 .4573 ace. 1/5 1.483E-3 3.836E-7
7 .8192 .2373 acc. 2 1.959E-4 1.071E~7
8 1.638 .1947 acec. 2 7.104E-5 2.367E-8
9 3.277 .2376 acc., 2 2.162E-5 7.483E-9
10 6.554 . 5401 ace. 1/7 2.922E-6 4.112E-9
11 .9362 .4288 acc. 1/5 1.375E-6 1.494E-9
12 .1872 .1684 acc. 2 2.510E-7 5.601E-10
17 5.992 .1582 acc. 2 9.769E-9 3.484E-12

of the iterative solution.

A sample of the

Step i

1
5
7
9
10
17

corresponding behavior of norm, max and min

[u] max (u) min (u)
.168368 .042103 .0005366
.191537 .044046 .0011975
.191542 . 044045 .0012128
same .044044 .0012145
same same .0012146
same sSame same

CPU time consumed = .068 sec.
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MAGNETOSTATIC, NUMERICAL EXAMPLES, SMbOTH CASE

Example 9.1 (continued)

A sample of the corresponding behavior of IIUIL max(u), min(u).

h = 1/30
Change in Relative

~ Step # At TP At error Residual
1 .01 .0130 acc. 8 1.731E-3 1.281E-5
2 .08 .0233. acc., 8 1.029E-2 1.400E-5
3 .64 .0364 acc. 8 4 .406E-2 5.957E~-6
4 5.12 .1006 acc, 2 8.836E-2 2.046E-6
5 10.24 .3933 ace. 1/5 6.245E~3 4.995E-7
6 2,048 .3253 acc. 1/5 1.085E-3 1.213E~7
7 . 4096 .1801 ace. 2 9.695E-5 3.198E-8
8 .8192 .1064 acc. 2 6.290E-5 1,004E-8
9 1.638 .0828 acc. 4 4.379E-5 4.096E-9
10 6.554 .1232 acc. 2 2.326E-5 1.983E-9
17 .4280 - .0841 ace. &4 3.142E-8 8.164E-12
20 13.70 .6719 acc. 1/11 1.844E-9 1.082E-12

Step # | ull max (u) min(u)
1 .524992 .047286 .0000596
5 .589507 .047972 .0001725
7 .589552 .047972 .0001767
9 .589527 same same

10 .589518 same same

20 same same same

CUP time consumed = .654 sec.
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MAGNETOSTATIC, NUMERICAL EXAMPLES, SMOOTH CASE

Example 9.1 (continued)

The behavior of the convergence of the method for mesh spacing
h = 1/40 is almost a replica of that with h = 1/30. A comparison between
some values of the solutions obtained with mesh spacings 1/10, 1/30, 1/40

are given below at the points indicated

(x,y) = (.2,.2) (.3,.5) (.5,.5) (.8,.8)

h=1/10 .0367607 .0211917 .0175967 .00391453
h=1/30 .0367582 .9211885 .0175985 .00391809
h = 1/40 .0367580 .0211883 .0175986 .00391802

A comparison with nonlinear point SOR (see Concus [5]).

(Residual)2 # of DADI # of SOR Newton

steps iterations
b= 1/10 10713 7 18
= 1/30 10712 6 58
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MAGNETOSTATIC, NUMERICAL EXAMPLES, MILDLY NONSMOOTH CASE

Example 9.2 (mildly nonsmo

oth case)

1- Region: 0 is the unit square (0,1) X (0,1).

2- Initial approximation: < = o,
3- Scaling type II: alvt = Lv - f.
4=, 5-, 6~, and 7- are the same as in EXample 9.1.

8~ Mesh spacing: h = 1/40.

Change in Relative
Step # At TP At error Residual
1 .001 .0765 acc. 4 1. 9.241E~2
2 .004 .1734 ace. 2 7.744E-1 7.583E~2
3 .008 .0992 acc. 4 4,863E~1 7.696E-2
4 .032 .0912 acc. 4 4,383E-1 9.961E-2
5 .128 .1891 ace. 2 8.698E-2 1.000E-1
6 .256 .3619 acc. 1/5 6.385E-3 4.895E-2
7 .0512 .9648 acc. 1/17 2.374E-3  2.142E-2
8 .003 .6797 ace. 1/11 1.598E-3 9.535E-3
9 .0003 .2849 ace. 2 3.618E-4 2.214E-3
10 . 00055 .2901 acc. 2 4.925E-5 1.555E-4
11 .0011 .1533 ace. 2 5.258E-5  7.207E-5
12 .0022 .1796 acc., 2 6.634E-5 5.685E-5
13 .0044 .1615 acc., 2 7.330E-5 5.185E—5
14 .0088 .1024 acc. 2 7.635E~5 4.323E-5
15 .0175 .0806 acc. 4 7.101E-5 3.260E-5
16 .0701 .1396 acc., 2 4.863E~5 1.908E-5
17 .1402 7141 acc. 1/11 1.446E-6 1.013E-5
18 .0127 .7369 acc. 1/11 5.467E-7 7.934E-6
19 .0012 .6324 acc. 1/7 2.673E-7 4.141E-6
20 .0002 .3531 acc. 1/5 9.929E-8 1.401E-6
21 .000033 .0843 acc. 4 1.030E-8 4.,539E-7
22 .00013 .2141 ace., 2 9.733E-9 1.390E-7
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Example 9.2 (continued)

A-:sample of the corresponding behavior of ,lull, max (u),
min (u)
Step # [ ul] max (u) min (u)
1 6044712 .0598996 1.7 x10”14
5 8.967774 .5963024 .000285760
10 8.935778 .5954112 .000141084
15 8.934234 .5953732 .000139146
18 8.933824 .5953540° .000139243
19 same same .000139256
20 same same | .000139257

22 same same same

CPU time consumed = 1.032 sec. '
2.4 seconds on the RUN76 compiler.

IR

Remarks: the maximum of u is achieved at the grid point with logical coor-
dinates (24,1) and the minimum is at (40,40) (always excluding the Dirichlet
portion of the boundary nodal points).

A summary of the corresponding results of the TRIM code:

Cycle # Max (u) min (u) Relative error
100 .608142 .000150830 3.7 x 1074
200 596444 .000135733 4 X 1073
300 . 595523 .000134992 2 X 10‘6
320 .595502 .000134972 107®

Total number of cycles needed for the relative error to be less than

107 = 328, CPU time consumed = 22.78 seconds using the RUN76 compiler.
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MAGNETOSTATIC, NUMERICAL EXAMPLES, HIGHLY NONSMOOTH CASE

Example 9.3 (highly nonsmooth case)

1- Region: Q is the square (0,40) X (0,40).
2- Initial approximation:\ uO = 0,
3- Scaling type II: a v, = Lv - £.

4= ,5- ,6-, and 7- are the same as in Example 9.1.

8- Mesh spacing: h = 1.

Yo = 20
Relative Residuzl
Step # At error X 10” max (u) min (u)
1 1.0 1.0 .51
24 60. 66 5.0 10~/ 1.0X 1077 67028.7 155.9

CPU time consumed = 1.412 seconds

= 3.284 seconds on the RUN76 compiler.
The "exact" value of max(u) = 67028.7 and the "exact" value of min(u) =
155.9; i.e., the same values recof&ed in Step #24.
The TRIM code corresponding results, also for relative error

less than 10_6, are:

Number of cycles to converge = 561,
max(u) = 67028.2
min(u) = 155.9

CPU time consumed = 68.9 seconds on the RUN76 compiler.
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MAGNETOSTATIC, NUMERICAL EXAMPLES, HIGHLY NONSMOOTH CASE

Example 9.3 (continued)

Yo = 12
Relative Residual
Step # At error X 104 max (u) min(u)
1 1.0 1.0 .52
50 6.313 41X 1070 2.6 X 1074 107483 278.4
60 1.162 4.6 X 107 8.6 X 107 107545 278.5
67 .179 1.8 X 1077 7.8 x 107% 107545 278.6
CPU time consumed = 4.050 seconds
= 9.417 seconds on the RUN76 compiler.
"exact" value of max(u) = 107547.
"exact" value of min(u) = 278.6.

The TRIM Code corresponding results are:

Number of cycles to converge = 502
max(u) = 107544
min(u) = 280.64

CPU time consumed = 63.4 seconds on the RUN76
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MAGNETOSTATIC, NUMERICAL EXAMPLES, HIGHLY NONSMOOTH CASE

Example 9.3 (continued)

Yo = 8
Relative Residual
Step # At error x 10~4 max (u) min(u)
1 1.0 1.0 .52
100 2143 1.3X107%  3.1x 1073 150915 428.4
200 510 8.4X 1077 6.9%X 1070 152035 433.2
251 092 48X 1077 1.3X 1070 152056 433.3

"exact" max(u)

"exact" min(u)

CPU time consumed by 200 steps = 12.769 seconds

= 29,478 seconds on the RUN76 compiler.

152061

433.3.

The TRIM Code corresponding results are:

Number of cycles

to converge = 425
max(u) = 152047
min(u) = 438.9

CPU time consumed = 54 seconds.
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Table 9.1

PERMEABILITY TABLE (values from the TRIM listing)

10% w|?  a(wld 10°%|vl®?  amwul?
1 o. .000225 21 5.0625 .055555
2 1.44 .000308 22 5.19684 . 066667
3 1.96 .00045 23 5.3216 .076923
4 2.25 .000667 24 5.49574 .090909
5  2.4025 .000935 25 5.75789 .111111
6  2.56 .00141 26 6.2026 .142857
7 2.7225 .00218 27 6.5675 .1666667
8  2.89 .00324 28 7.1321 .2
9  3.0625 .00434 29 8.1214 .25
10 3.24 .00567 30 10.2872 .333333
11 3.4225 .00719 31 12.705 A
12 3.61 .009 32 18.3033 .5
13 3.8025 .0111 33 23.169 .555555
14 4.0 .0133 34 32.549 .625
15  4.2025 .0164 35 41.19 .666667
16 4.41 .0202 36  56.081 .714285
17 4.5156 .0226 37 85.972 .7692307
18 4.6225 .0256 38 114.466 .8
19 4,731 .0303 - 39 164.837 .833333
20  4.84 .0377 40 554.084 .909090
+90

41 10 1.0
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A THREE DIRECTIONAL EXAMPLE ON A HEXAGONAL REGION

Example 10.1

Here we solve the discretized Laplace equation with a 7-point
pattern. The exact solution, for which Dirichlet data is prescribed is

u = 0.

1- Region: Q is the hexagon with edges of unit length.

2- 1Initial approximation: u0 = uniformly distributed random numbers
in (0,1).
3~ ‘Scaling type I: v, = Lv - £f.

4~ Approximate linearization: the problem is already linear.
5~ Time policy: At, 3 At, 4 At.

6~ Strategy: thg "weak strategy'.

7- Compﬁtef and compiler: 7600, FTN4, OPT=2.

8- Mesh spacing: h = 1/10.

Initial error = 9.378.
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A THREE DIRECTIONAL EXAMPLE ON A HEXAGONAL REGION

Changé in
Step # At TP CF At Error Residual
1 1.0 .5686  .6188  acc. 1/7 5.879E+0  3.694E+3
2 .1429  .5495  .5959  acc. 1/7 3.503E+0  5.205E+2
3 .02041 .4918  .1374  acc. 1/5 4.814E-1  6.029E+1
4 0041  .1233  .2967  acc. 2  1.428E-1 2.231E+0
5 .0082  .0967  .8567  acc. 1.224E<1  7.577E-2
6 .03265 .0200  .6094  acc. 7.458E-2  8.276E-2
7 .2612  .0966  .0340  acc. 2.535E-3  2.861E-1
8 1.045  .5736  .6976  acc. 1/7 1.768E-3  4.192E-1
9 .1493  .5463  .3462  acc. 1/7 6.122E-4  5.959E-2
10 .02132 .3425  ,2176  acc. 1/5 1.332E-4  5.614E-3
11 .004265 .1116  .8828  acc. 1.176E~4  1.941E~4
12 .0085 .0109  .8661 acc. 8  1.018E~4  2.536E-5
13 .0682  .0258  .3730  acc. 3.798E-5 1.260E-4
14 .5459  .3059  .0636  acc. 1/5 2.418E-6 3.179E-4
15 .1092  .3710  .2145  acc. 1/5 5.187E-7  4.829E-5
16 .02184 4168  .2453  acc. 1/5 1.272E-7  5.294E-6
17 .00437 .0898  .8816  acc. 4  1.122E-7 2.031E-7
18 .01747 .0164  .7638  acc. 8.566E-8  4.433E-8
19 .1398  .0437  .1354  acc. 1.160E-8  1.829E-7
20 1.118  .5902  .1794  acc. 1/7 2.080E-9  3.815E-7
21 .1597  .4395  .2999  acc. 1/5 6.237E-10 6.154E-8
22 .03194 .4441  .1655  acc. 1/5 1.032E-10 8.068E-9
23 .0064 .1545  .6187  acc. 6.387E-11 4.179E~10
24 .0128  .0168  .7977  acc. 5.095E-11 2.507E-11
25 .1022  .0441  .2297  acc. 1.171E-11 9.449E-11

CPU time consumed =

.26 seconds.
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A FOUR DIRECTIONAL TEST PROBLEM

Example 10.2

Here we solve the discretized Laplace equation with a 9-point
pattern. The exact solution, for which Dirichlet data is prescribed, is

u = 24-6 x2 y2 + y4.

1- Region: {2 is the unit square (0, 1) X (0, 1).

2- Initial approximation: uO = 0.

3- Scaling type I: v, = Lv - £.

4- Approximate linearization: the problem is already linear.
5- Time policy: At, 3 At, 4 At.

6~ Strategy: the "weak strategy".

7~ Computer and compiler: 7600, FTN4, OPT=2,

8- Mesh spacing: h = 1/40.

Remark: Since no step is to be rejected, the abbreviation

"acc." for the acceptance of the step will be omitted.
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At Change in Relative
Step# x1000 TP At CF Error error Residual
1 10.0 .6670 1/11 .57 1.7E+1 1.0 4,7E+1
2 91 .5405 1/7 26 4.4 5.2E-1 3.0E+1
3 .13 .4109 1/5 .09  3.,9E-1 1.5E-1 3.0
4 .03 .0428 .86 3.3E~1 4,7E-3 5.8E-1
5 .21 .0919 .63 2,1E-1 5.0E-3 6;9E—2
6 .83 .0435 .27 5.7E-2 5.6E-3 2,.5E-2
7 6.65 L4319 1/5 .83 . 4.7E-3 1.9E-3 1.5E-2
8 1.33 .3981 1/5 .43  2,0E-3 1.2E-4 1.3E-2
9 .26 .7303 1/11 .51  1.0E-3 4 ,8E~-5 4.9E-3
10 .02 .0482 8 .91  9.4E-4 1.3E-5 1.9E-3
11 .19 .2125 2 .91 8.6E-4 3.4E-6 7.0E-5
12 .39 .0138 8 .83 7.1E-4 5.3E-6 4,2E-5
13 3.09 .0287 8 .23 1.7E-4 1,9E-5 3.0E-5
14 24.76 .5875 1/7 .09 1.5E-5 5.4E-6 2.5E-5
15 3.54 L4251 1/5 .26  3.9E-6 4,3E-7 2.5E-5
16 .71 .5418 1/7 .59 2.3E-6 8.5E-8 2.0E-5
17 .10 .5798 1/7 .52 1.2E-6 6.3E-8 2.1E-6
18 .01 .0124 8 .99 1.2E-9 2,8E-9 6.2E-7
19 .12 .1329 .95 1.1E-6  2.3E-9 5.0E-8
20 .23 .0053 .90 1.0E-6 4,1E-9 4,1E-8
21 1.85 .0122 42 4,.2E-7 2.0E-8 3.0E-8
22 14.78 .3310 1/5 .06 2,3E-8 1.4E-8 1.1E-8
23 2.96 .3314 1/5 .23 5.4E-9 6.5E-10 8.8E-9

CPU time consumed = .864 seconds.
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NONLINEAR u DEPENDENT COEFFICIENTS

Example 11.1

The detailed descriptions of problems (a)

the different strategies being employed here, are

XI.

Recall that:

initial error in Problem (a)

initial error in Problem (b)

and (b), as well as

to be found in Section

65.03,

36.84,

the convergence criteria is that the total reduction factor be less than

5%107°.

Test case 1

Problem (b) combined with strategy I, time policy At, At, 2 At,

initial At==6.7480)<10_4, and with the frozen coefficients approximate

linearization.
At Change 1in CF RF
Step # X10% TP At
1 6.7492 .1500 ace. 1 .7385 .7385
2 6.7492 .0950 ace. 2 .8961 .6617
5 13.498 .1006 acc. 1 .8916 .4505
6 13.498 .0970 ‘acc. 2 .9855 .4035
7 26.9966 1126 ace. 1 .8087 .3263
62 same .1175 acc. 1 .8174 4.85%107°
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COMPUTATIONAL EXAMPLES FOR SOME PROBLEMS WITH
NONLINEAR u DEPENDENT COEFFICIENTS

Example 11.1 (continued)

Beginning from step number 7 and there after, the time step-
. size remained fixed at the value 26.9966><10_4, the CF value remained

somewhat stagnant at .817.

Test case 2
Same as in case 1, now however we use the true linearization.

The problem has converged in only 19 steps with total reduction

factor = 2.33>(10_6.

Remark: The ratio of the CPU time per step when employing the approx-
imate linearization to that when utilizing the true lineariza-

tion, is about 7 to 9.

A summary of these two cases, as well as some others, is given

as follows.
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COMPUTATIONAL EXAMPLES FOR SOME PROBLEMS WITH
NONLINEAR u DEPENDENT COEFFICIENTS

Example 11.1 (continued)

List of notations and abbreviations: |

Ato = initial choice of At, RF = reduction factor (of true error)
frozen = frozen coefficient approximate linearization,
exact = exact or true linearization.
Strategy Strong strategy Strategy II Strategy I
time policy At, 3At, 4At At, 3At, 4 At At, At, 2 At
frozen  exact frozen exact frozen exact

Problem (a)
At, = .00018312

0
steps to conv. 22 30 19 30 38 35
total RF X10° 3.0 1.11 3.2 1.3 4.98 .25

Problem (a)

Ato = .01

steps to conv. 16 29 20 32 30 36
total RFXlO6 4.73  4.80 2.38 1.00 4.39 .52
Problem (b)

Ato = .00067480

steps to conv. 19 18 20 21 62 19
total RF X 10° 2.82  3.02 4.5 4.5 4.85  2.33
Problem (b)

Ato = .01 _

steps to conv. - 21 14 19 18 62 21

total RF X 10° 1.57 4.38 4.05  1.05 4.95  4.33
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f MAGNETOSTATIC, NUMERICAL EXAMPLES

|
|

XBL7711-11328
TEST PROBLEM WITH AN H-SHAPED MAGNET

Figure 9.2. The coordinates of the points a,b,.. k indicated on the
plotting are: a(0,0), b(16,0), c(40,0), d(40,12), e(40,40), £(0,40),
g(30,12), h(30,20), j(16,20), and k(16,12). The air region Q, is the
interior of the closed polygon becdghjk, {lg is the interior of kghj.
The contours shown are the "equipotentials" u(x,y) = c¢ for different
values of the constant c where u is the solution of Case II, Section
IX, Yo = 12,

(This plotting was carried out by the plotting portion of the TRIM
code of LBL.)
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